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SOA Foundations Track Topics 
(serial-chain rigid body systems)

1. Spatial (6D) notation – spatial velocities, forces, inertias; spatial cross-product, rigid body 

transformations & properties; parallel axis theorem

2. Single rigid body dynamics – equations of motion about arbitrary frame using spatial 

notation

3. Serial-chain kinematics – minimal coordinate formulation, hinges, velocity recursions, 

Jacobians; first spatial operators; O(N) scatter and gather recursions

4. Serial-chain dynamics – equations of motion using spatial operators; Newton–Euler mass 

matrix factorization; O(N) inverse dynamics; composite rigid body inertia; forward Lyapunov

equation; mass matrix decomposition; mass matrix computation; alternative inverse dynamics

5. Articulated body inertia - Concept and definition; Riccati equation; alternative force 

decompositions

6. Mass matrix factorization and inversion – spatial operator identities; Innovations 

factorization of the mass matrix; Inversion of the mass matrix

7. Recursive forward dynamics – O(N) recursive forward dynamics algorithm; including gravity 

and external forces; inter-body forces identity

See https://dartslab.jpl.nasa.gov/References/index.php for publications and 

references on the SOA methodology.

https://dartslab.jpl.nasa.gov/References/index.php
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SOA Generalization Track Topics 

8. Graph theory based structure – BWA matrices, connection to multibody 

systems

9. Tree topology systems – generalization to tree topology rigid body systems, 

SKO/SPO operators, gather/scatter algorithms

10.Closed-chain dynamics (cut-joint) – holonomic and non-holonomic 

constraints, cut-joint method, operational space inertia, projected dynamics

11.Closed-chain dynamics (constraint embedding) – constraint embedding for 

graph transformation, minimal coordinate closed-chain dynamics

12.Flexible body dynamics – Extension to flexible bodies, modal 

representations, recursive flexible body dynamics
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Recap
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Previous Session Recap

• Looked into the augmented method for closed-chain 

dynamics (DAE approach)

• Does not have a direct SKO model

• Introduced the notion of operational space inertia 

matrix (OSIM) and OSCIM

• Discussed the Backward Lyapunov Equation based 

operator decomposition

• Applied SKO model recursive algorithms for the 

various steps in the augmented approach



Closed-Chain Dynamics
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SKO models and loops

• SKO models require an underlying tree structure

• The presence of even a single loop constraint leads 

to the loss of the tree structure

• This means that the SKO model analysis and 

algorithms do not apply!

• The cut-joint method seen earlier provides some –

but unsatisfactory – relief

• We will attempt to remedy this situation to allow the 

use of SKO models with loops



Closed Chain Modeling Options

FA model TA model CE model

Non-minimal coords

+ constraints

Simple  setup

Minimal tree coords

+ constraints

Better for large loops

Minimal coords

Optimal for small loops
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Augmented solution method

• Use minimal number of joint 

cuts so have a spanning tree + 

cut-joint constraints

• The tree system is a minimal 

coordinate multibody system 

with a configuration dependent 

mass matrix
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Augmented method comments

• Even though the augmented method approach does 

not lend itself directly to be SKO model, we find that 

the SKO algorithms can be used to efficiently carry 

out each of the augmented method steps

• However, this still remains a non-minimal 

coordinates and a DAE approach
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Projection solution method

• Switch to minimal coordinates form

• Pick              of the coordinates as 

independent variables

• Numerically project the equations of 

motion down to these independent 

variables

• Solve these equations of motion and 

lift up the solution to get all 

coordinate accels

• Expensive process, and has issues 

with picking indep coords
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Projection method comments

• The projected methods is a minimal coordinates, and 

hence ODE approach

• However, the mass matrix is obtained by a numerical 

projection approach – which destroys all structure, and 

we are left with an expensive to compute mass matrix, 

with opaque structure

• The lack of structure means that SKO models are not 

applicable and the recursive techniques cannot be 

used
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Constraint embedding solution approach

• A minimal coordinate 

approach that preserves 

structure

• Uses graph transformation 

and variable geometry bodies 

to derive an SKO model and 

an ODE approach

• All SKO model analysis and 

recursive algorithms thus 

apply
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Coarsening Graphs
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Coarsened graph representations

• So far our graph representation for 

bodies has mapped individual bodies to 

graph nodes

• However, one can also view a multibody 

system as a collection of connected of 

sub-trees, i.e. a tree of serial-chains as 

in the example in the figure

• From this perspective, an alternative 

graph representation may use nodes for 

the component serial-chains

• This is a coarser representation of the 

system using more complex serial chain 

subgraph nodes
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Coarsening questions

• What kind of coarsening makes 

sense?

• What are the requirements on 

the component subgraphs?

• What are the properties of the 

resulting coarse graph 

representation?

• What types of coarsening 

preserve the tree and SKO 

model structure?
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Partitioning Graphs
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Regular, induced & path-induced subgraphs

A subgraph is a collection of nodes and edges belonging 

to the parent graph

Also includes all edges 

between nodes in the 

subgraph

Arbitrary collection of 

nodes and edges

Also includes all edges & 

nodes on paths  between 

nodes in the subgraph
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Partitioning a tree graph

A path-induced subgraph has the property that it partitions a tree 

into a disjoint set of

• One or more children path-induced trees

• Itself

• Single parent path-induced tree
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Impact on SKO models

• SKO models require an underlying tree structure

• Path-induced subgraphs partition a tree and a 

collection of sub-trees

• What is the impact of such partitioning on an 

SKO model?
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Partitioning SKO models



22

Partitioning SKO models

• Path-induced sub-graphs of SKO-models are SKO models in 

their own right

• What is the relationship between the system level SKO model 

and the partitioned SKO models?
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Partitioned SKO operator

The system level SKO operator has the following 

partitioned structure:

connector to parent 

subgraph

connector to children 

subgraphs
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Example of partitioning the SKO operator
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Partitioned SPO operator

The system level SPO operator can be partitioned using the 

subgraph SPO operators
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Proof of partitioning
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SPO operator partitioning example
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Partitioned SKO model

Similarly the H and M operators can be partitioned 

based on the component operators
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Partitioned mass matrix
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Aggregating Nodes
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Tree coarsening

• We have seen earlier that if a subgraph is path-

induced then it partitions the graph into sub-trees

• For graph coarsening, we want to represent these 

sub-trees as nodes in a new graph, i.e. we want to 

aggregate sub-tree nodes into single compound node

• How do we do this, and what does this do to the tree 

structure of the new graph?
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Node contractions

Node contraction/aggregation combines nodes into a single node

• All children of the old nodes become children of the new node

• The parents of the old nodes become parents of the new node

We can lose the tree structure after node contractions.
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Node contraction examples

Again, the tree structure has been lost after node aggregation.
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Preserving tree structure

• So even if we take care to work with path-

induced subgraphs, node aggregation can lead 

to a loss in the tree structure of the resulting 

graph

• How can we coarsen the graph using node 

aggregation without losing the tree structure?
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Aggregation condition

• When is the tree structure preserved after subgraph nodes aggregation?

• Aggregation condition

• the subgraph is an induced subgraph, i.e. it contains all the node edges

• and the subgraph has a single parent node

• The single parent node requirement forces a path-induced property
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Preserving tree structure

• The new graph with the aggregated nodes is a tree if and 

only if the subgraph satisfies the aggregation condition

• For a subgraph’s aggregation subgraph is defined as the 

smallest subgraph that contains and satisfies the 

aggregation condition

induced 

subgraph
path induced 

subgraph

aggregation 

subgraph
subgraph

contains all 

paths
has single 

parent node

contains all 

edges
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SKO model for an aggregated tree
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Partitioned tree SKO/SPO operators 

Recall earlier partitioning of the SKO and 

SPO operators:
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Aggregation for multibody systems

• Node contraction of bodies in multibody context is also 

referred to aggregation to create compound/aggregated 

bodies.

• A subgraph of bodies is aggregated in the new graph 

representation

• The new compound body node can be viewed as 

representing a variable geometry body

• Thus a graph node is not restricted to single bodies
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Determing the new SKO operator

• To determine the SKO operator elements we need to identify 

the recursive relationships between the node velocities in the 

new tree

• The velocity for an aggregated node is defined as the stacked 

vector of velocities for the component bodies aggregated in 

the node

• Note that the size of this velocity vector is no longer 6, and 

depends on the number of aggregated bodies 
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Component Level Recursive Relationships
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Aggregated body velocity relationship

General velocity relationship

For the aggregated body

(implicit)

(explicit)

aggregated node 

element in the 

SKO operator

aggregated node

joint map matrix
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Aggregated node level velocity and force relationships
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Comments on aggregated SKO model

• The size of the recursive relationship depends on the 

number of aggregated bodies

• This size defines the row size for the aggregated 

node in the SKO operator

• This is an example of the case where the size is not 

6, and can in fact vary depending on the number of 

bodies being aggregated
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Aggregated graph – SKO operator

SKO operator structure for the new aggregated graph
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Aggregated graph – SPO operator

SPO operator structure for the new aggregated graph:

where
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Aggregated graph – SKO model

Partitioning

joint map matrix for the 

aggregated body
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Aggregated graph – SKO model (contd)

transformed system mass matrix
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Equations of motion invariance

The equations of motion term values remain the same 

with and without aggregation
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Constraint Embedding
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Constraint embedding approach

• Cut loops to create spanning tree + constraints (just as for 

augmented approach)

• For each constraint, identify the constraint nodes/bodies

• Identify a subgraph for the constraint bodies, such that 

collapsing the subgraph into a new node, leaves us with a 

tree and an SKO model

• Define the joint map matrix for the aggregated bodies to 

take into account the loop constraints

We have already seen how to partition & transform graphs into 

new graphs using path-induced subgraphs and node aggregation.
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Approach

• Introduce cut-joints for each closed loop

• For each loop identify the aggregation subgraph for the constraint node/bodies

• Smallest sub-tree containing the nodes

• Drop the root node

• Use aggregation to transform the graph

• Absorb the cut-joint into the new compound body hinge
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Minimal aggregation subgraphs

• TBD



54

Compound body and hinge

• The aggregation node contains all the bodies involved in the closed loop

• Identify a minimal set of coordinates for just the loop

• Parameterize the loop motion (including shape) based on these 

coordinates

• Define a new compound hinge for this body with these minimal 

coordinates

• This hinge replaces the physical hinge in the aggregated SKO model

• The loop constraint is essentially buried within the compound body & 

hinge and eliminated from the aggregated tree

• The compound hinge not only defines the articulation of the compound 

body, but also the “shape” of these variable geometry bodies
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Constraint embedding examples

• TBD

There are multiple options for defining the aggregation node
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Constraint embedding examples (contd)
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Compound hinge definition

The mapping from the independent to the full set of coordinates for 

the aggregation subgraph
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Compound hinge joint map matrix 

minimal coordinates velocity mapping

The                             aggregated body joint map matrix controls the 

articulation as well as the internal shape of the compound body.
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At the operator level …
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SKO model equations of motion with constraint embedding

minimal coordinate mass matrix
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Examples 
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Geared links

Gearing introduces loops involving 3 bodies at each stage
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Geared aggregation node – 2 bodies
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Four-bar planar linkage
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4-bar aggregation node – 3 bodies
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Constraint Embedding SKO model 
algorithms
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ATBI recursion step for the aggregated body

The only change to the ATBI recursion steps are around the aggregated body.
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Mass matrix inversion still holds

After constraint embedding, we have minimal coordinates and an SKO 

model, and consequently the mass matrix factorization and inversion 

properties continue to hold.
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Recursive ATBI forward dynamics

• The algorithm is O(N) in the number of nodes

• However, steps involving compound bodies have 

higher computational cost proportional to the square 

of the number of aggregated bodies 
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Comments on CE approach

• The obvious tree structure is not available with loop constraints –

so we had to work harder to do a graph transformation to obtain a 

tree needed for an SKO model

• With CE, the tree system has minimal coordinates, hence an ODE 

solver can be used

• We may think of CE is achieving the goals of the projection 

approach, but doing so while preserving structure

• Hence all the benefits of a SKO model – analysis and 

algorithms – become available to even closed-loop systems

• Often we have analytical solution for the loop kinematics (eg. 4-

bar case) which simplifies the determination of the X matrix and 

speeds up computations
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Constraint Embedding to the rescue

Constraint embedding transforms a 
closed-loop system graph into a tree 
graph

• Minimal coordinate ODE 

model for a closed-loop 

system

• Tree analytical structure is 

regained

• Well defined non-singular 

mass matrix

• Mass matrix inversion results 

hold again

• Recursive O(N) methods are 

available again as wellThe compound body is a “variable geometry body”!

With closed-loop, no tree structure  – paradise lost!

Paradise regained!



Constraint Embedding Examples – Basic Mechanisms

72



73

Constraint Embedding Examples – Double wishbone 
suspension

Multiple closed-loops
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Humanoid leg example

Graph before 

constraint embedding

Graph after 

constraint embedding



75

Humanoid robot leg (multiple loops)

Serial/parallel mechanism with 20 bodies, 18 unconstrained 

dofs, and 6 actual dofs
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Performance comparisons for vehicle

Comparison of the speed and error 

performance of the CE and full/tree 

augmented approaches for a vehicle 

with single-wishbone suspensions 

dynamics model.
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Recap
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Summary

• Developed notions of graph partitioning

• Applied these to partitioning SKO models

• Defined conditions for partitioning to preserve tree 

structure

• Developed notion of subgraph aggregation

• Derived SKO model for aggregated graph

• Built constraint embedding idea on notion of subgraph 

aggregation

• Developed SKO model and algorithms for closed-loop 

systems using constraint embedding
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SOA Foundations Track Topics 
(serial-chain rigid body systems)

1. Spatial (6D) notation – spatial velocities, forces, inertias; spatial cross-product, rigid body 

transformations & properties; parallel axis theorem

2. Single rigid body dynamics – equations of motion about arbitrary frame using spatial 

notation

3. Serial-chain kinematics – minimal coordinate formulation, hinges, velocity recursions, 

Jacobians; first spatial operators; O(N) scatter and gather recursions

4. Serial-chain dynamics – equations of motion using spatial operators; Newton–Euler mass 

matrix factorization; O(N) inverse dynamics; composite rigid body inertia; forward Lyapunov

equation; mass matrix decomposition; mass matrix computation; alternative inverse dynamics

5. Articulated body inertia - Concept and definition; Riccati equation; alternative force 

decompositions

6. Mass matrix factorization and inversion – spatial operator identities; Innovations 

factorization of the mass matrix; Inversion of the mass matrix

7. Recursive forward dynamics – O(N) recursive forward dynamics algorithm; including gravity 

and external forces; inter-body forces identity

See https://dartslab.jpl.nasa.gov/References/index.php for publications and 

references on the SOA methodology.

https://dartslab.jpl.nasa.gov/References/index.php
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SOA Generalization Track Topics 

8. Graph theory based structure – BWA matrices, connection to multibody 

systems

9. Tree topology systems – generalization to tree topology rigid body systems, 

SKO/SPO operators, gather/scatter algorithms

10.Closed-chain dynamics (cut-joint) – holonomic and non-holonomic 

constraints, cut-joint method, operational space inertia, projected dynamics

11.Closed-chain dynamics (constraint embedding) – constraint embedding for 

graph transformation, minimal coordinate closed-chain dynamics

12.Flexible body dynamics – Extension to flexible bodies, modal 

representations, recursive flexible body dynamics


