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SOA Foundations Track Topics 
(serial-chain rigid body systems)

1. Spatial (6D) notation – spatial velocities, forces, inertias; spatial cross-product, rigid body 

transformations & properties; parallel axis theorem

2. Single rigid body dynamics – equations of motion about arbitrary frame using spatial 

notation

3. Serial-chain kinematics – minimal coordinate formulation, hinges, velocity recursions, 

Jacobians; first spatial operators; O(N) scatter and gather recursions

4. Serial-chain dynamics – equations of motion using spatial operators; Newton–Euler mass 

matrix factorization; O(N) inverse dynamics; composite rigid body inertia; forward Lyapunov

equation; mass matrix decomposition; mass matrix computation; alternative inverse dynamics

5. Articulated body inertia - Concept and definition; Riccati equation; alternative force 

decompositions

6. Mass matrix factorization and inversion – spatial operator identities; Innovations 

factorization of the mass matrix; Inversion of the mass matrix

7. Recursive forward dynamics – O(N) recursive forward dynamics algorithm; including gravity 

and external forces; inter-body forces identity

See https://dartslab.jpl.nasa.gov/References/index.php for publications and 

references on the SOA methodology.

https://dartslab.jpl.nasa.gov/References/index.php
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SOA Generalization Track Topics 

8. Graph theory based structure – BWA matrices, connection to multibody 

systems

9. Tree topology systems – generalization to tree topology rigid body systems, 

SKO/SPO operators, gather/scatter algorithms

10.Closed-chain dynamics (cut-joint) – holonomic and non-holonomic 

constraints, cut-joint method, operational space inertia, projected dynamics

11.Closed-chain dynamics (constraint embedding) – constraint embedding for 

graph transformation, minimal coordinate closed-chain dynamics

12.Flexible body dynamics – Extension to flexible bodies, modal 

representations, recursive flexible body dynamics
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Previous Session Recap
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Previous Session Recap

• Used graph theory concepts to define the notion of 

BWA matrices for trees and graphs

• Showed that tree BWA matrices have a well 

defined 1-resolvent matrix

• Showed that the        spatial operator for serial 

chains is a tree BWA matrix

• Developed equations of motion for a tree system 

using tree BWA operators

• The spatial operator expressions remain 

unchanged from serial to tree systems
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Comments on tree equations of motion

• The equations of motion  are identical in form at the operator 

level to the serial-chain equations of motion!

• These hold for arbitrary system size and branching

• The differences are

• At the component level we now have to work with multiple 

children bodies

• The operator structure is different – however they are both 

tree BWA matrices
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Comments

• We have been able to generalize the notion of the        and       operators 

& structure from serial chains to trees

• The crucial step was to look at the general property of BWA  matrices 

associated with graphs and to recognize that        is a tree BWA 

matrix

• From the tree BWA property alone we could

• Establish the existence of the 1-resolvent

• Establish sparsity property based on topological structure

• Establish disjointedness property of the 1-resolvent and its transpose

• Establish the chain rule property for the elements of the 1-resolvent

• We did not require canonical indexing, and triangularity assumptions at 

all!
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Comments (contd)

• We have earlier used a canonical serial chain to develop 

the SOA operator analysis and algorithm

• The simple structure of canonical serial-chains allowed 

us to build up the techniques as well as our intuition

• But as we are starting to see, neither the serial-chain, nor 

the canonical nature are really that important

• It is the BWA part that matters

• The specific block entries of the BWA matrix did not matter 

either

• In fact they do not even have to be square or rigid body 

transformation matrices!
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SKO model for Multibody Systems



Recursive structure is a BWA matrix

Connectivity structure is a 1-resolvent

NE factorization is a square matrix

Kane’s approach non-square partial velocity 

matrix

Lagrangian approach Opaque, non-singular matrix

10

Structure: Insight and Implications

Opens the gates to SOA analysis

Absolute coordinates Non-minimal, explicit

constraints

DAE rabbit hole, sparsity 

structure
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Generalization path forward

• For a tree rigid multibody system we have developed

• the operator expressions for the equations of motion

• the Newton-Euler factorization of the mass matrix 

• These expressions are identical in form to those for 

serial-chain rigid multibody systems

• Spoiler alert – the rest of the operator analysis including 

the factorization and inversion of the mass matrix for 

serial-chain rigid body systems carries over to tree 

multibody systems as well

• How general is such analysis? 
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Spatial Kernel Operator definition 

• We refer to the       BWA matrix in the context of tree 

multibody systems as a Spatial Kernel Operator 

(SKO)

• The corresponding 1-resolvent matrix        is 

referred to as the Spatial Propagation Operator 

(SPO)

• The SPO operator is entirely determined by it SKO 

operator – and hence the ‘kernel’ terminology
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Multibody SKO model definition

• Multibody model with tree topology structure

• Has SKO and SPO operators

• Block-diagonal, full-rank H operator

• Block-diagonal, positive-definite M operator

If these conditions are satisfied, then the model is said to satisfy the SKO 

model conditions, and be referred to as an SKO model with the associated                    

operator triplet.

Equations of motion
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Comments on SKO model

No assumptions have been made about the specific 

nature of the      and     operators

• Elements are not rigid body 

• Elements may be non-square

• Elements may be of different sizes

• Elements may be singular

• Even the tree-topology requirement can be relaxed

Potential generalizations
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Compatible SKO model operators

• The operators have to be derived from the 

same underlying multibody system – and 

hence be “compatible” in order to form an SKO 

model.

• A multibody system’s SKO model is not unique, 

and depends on the choice of base body, body 

reference frames etc.
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Properties of SKO models

• We will now derive the properties of an 

SKO model

• These properties will be generalizations of 

ones we encountered for serial-chain rigid 

body systems

• In future, any system satisfying the SKO 

model conditions will automatically inherit 

these properties
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SPO Scatter recursions for SKO Models
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Recall: Base-to-tips structure-based 
O(N) scatter recursion for serial-chain

O(N) structure-based, base-to-tip 

scatter recursion

Algorithm flow

operator transpose/vector product

• Applies to any x

• Does not require explicit 

computation of       at all

• Only depends on elements of 

Example – link velocity computation



Generalized base-to-tips structure-based 
scatter recursion

O(N) structure-based 

scatter algorithm

Algorithm flow

operator transpose/vector product

• Applies to any x

• Does not require explicit 

computation of       at all

• Only depends on elements of 

19
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Derivation of scatter recursion (using tensor notation)

Have
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SPO Gather recursions for SKO Models
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Recall: Tips-to-base structure-based 
O(N) gather recursion for serial chain 

O(N) structure-based tip-

to-base gather recursion

Algorithm flow

operator/vector product

• Applies to any x

• Does not require explicit 

computation of       at all

• Only depends on elements of 

Example – torque for end-effector force



Generalized tips-to-base structure-based 
gather recursion

O(N) structure-based 

gather algorithm

Algorithm flow

operator/vector product

• Applies to any x

• Does not require explicit 

computation of       at all

• Only depends on elements of 

23
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Derivation of gather recursion (using tensor notation)

Have

Thus
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Related scatter/gather recursions

Similar operator expressions to recursions mapping
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Newton-Euler Inverse Dynamics for SKO 
Models
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Inverse dynamics

• Need to compute RHS of

• First focus on the             mass matrix term

• One option is to compute the         mass matrix 

and then the            product

• This would be at the minimum a            cost 

process for computing the         matrix using 

the optimal CRB algorithm seen earlier

• Can we do better? 
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Recall: Exploiting Newton-Euler factorization for computing              rigid-
body serial-chains

can be computed using a sequence of O(N) 

operator/vector products

diagonal matrix times vector

recursive scatter alg.

diagonal matrix times vector

recursive gather alg.

diagonal matrix times vector

This is another example of being able to directly map 

operator expressions into low-cost recursive algorithms
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Newton-Euler O(N) Recursive Inverse Dynamics for Serial-Chains

Overall O(N) Newton-

Euler recursive 

inverse dynamics

Base-to-tip O(N) 

recursive scatter 

sweep

Tip-to-base O(N) 

recursive gather

sweep

Originally 

developed by Luh, 

Walker & Paul
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SKO model equations of motion

Equations of motion

mass matrix

Newton-Euler 

Factorization

Coriolis 

vector
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Generalized O(N) NE inverse dynamics

Valid for any SKO model:

Base-to-tip O(N) 

recursive scatter 

sweep

Tip-to-base O(N) 

recursive gather

sweep
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Forward Lyapunov Equation for SKO 
models
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Recall: Forward Lyapunov Equation for CRBs (rigid-body serial-
chain)

Define CRB spatial operator

CRB recursion

Can re-express as CRB “forward Lyapunov

equation” using spatial operators
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Recall: Decomposition structure of 

The decomposition consists of 3 disjoint terms – a diagonal, and 

strictly upper/lower triangular parts

diagonal lower 

triangular

upper 

triangular

Previously:
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Generalized Forward Lyapunov decomposition

With A & B being SPO operator, and X block diagonal and 

Like CRB

diagonal

disjoint
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Generalized decomposition

While the decomposition 

terms are always 

disjoint, the triangular

structure holds for only 

canonical trees 

Triangularity only for canonical trees

disjoint

diagonal
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Generalized CRB gather recursion

O(N) gather 

recursion
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Derivation

or
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Mass Matrix Computation for SKO Models
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Recall: Decomposition of the mass matrix

Can use the CRBs to develop a decomposition of 

the mass matrix into disjoint components

diagonal strictly 

lower 

triangular

strictly 

upper 

triangular
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Recall: Mass matrix computation algorithm structure

Compute diagonal, followed by off-diagonal elements

Computation of the mass 

matrix is rarely needed

This is an early example of 

being able to directly map 

operator expressions into 

low-cost recursive 

algorithms
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Generalized mass matrix decompositon

Using the forward Lyapunov decomposition

Generalized O(N) 

CRB gather 

recursion
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Generalized mass matrix computation

Compute diagonal CRB elements in a gather recursion 

followed by the off-diagonal terms
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Generalized mass matrix sparsity

The mass matrix’s sparsity mirrors that of the SPO matrix 

Unrelated body pair 

terms are zero
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Recall: Trace of the serial-chain mass matrix

General expression

For 1 dof hinges

zero trace
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Trace of the general mass matrix

zero trace

General expression
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Generalized Backward Lyapunov Equation 
for SKO Models
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Generalized Forward Lyapunov decomposition

With A & B being SPO operator, and X block diagonal, then 

Like CRB
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Look at the                      product 

• This product is the dual to the                    

product used for understanding the mass matrix 

structure

• Why is this dual product important?

• It shows up in products of the form        in 

dynamics analysis

• One example in cut-joint closed-chain dynamics 

computations

• Another example is that of operational space 

dynamics in robotics   
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Generalized Backward Lyapunov docomposition

Dual to the forward Lyapunov decomposition

block 

diagonal

disjoint decomposition

More in later sessions …
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ATBI Riccati Equation for SKO Models
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Recall: Articulated body inertias algorithm for serial-chain

O(N) tip-to-base gather algorithm for ATBI quantities for the 

Riccati equation
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Recall: ATBI spatial operators

Now define spatial operators using the ATBI quantities
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Recall: Structure of 

has the same structure as 

has same structure as        and is nilpotent

block diagonal
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Recall:       is the 1-resolvent of 

Analogous to

define
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Recall: Operator level Riccati equation for serial–chain ATBI

The ATBI recursion

can be re-expressed at the operator level as

Similar to Lyapunov equation
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Generalized ATBI Riccati Equation algorithm

Gather algorithm for SKO model ATBI
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Generalized ATBI operators
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Generalized ATBI Riccati operator equation
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Operator Identities for SKO Models
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Recall:       spatial operator for serial-chains

has the same structure as 

The only non-zero entries are along the first sub-diagonal

block diagonal
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Generalizaton of      to SKO Models

Lower-triangular only for canonical trees

These identities continue to hold:
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Identities generalization

Recall serial-chain decomposition:

strictly lower 

triangular
block-diagonal

strictly upper 

triangular

SKO model generalization (disjoint decomposition):

block-diagonal
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Expression for 

Identity continues to hold for SKO models

So does this identity
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Identities generalization (contd)

Recall serial-chain decomposition:

SKO model generalization (disjoint decomposition):

strictly lower 

triangular
block-diagonal strictly upper 

triangular
dense

using ATBIs
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Recall: Serial-chain Identities

These identities are very useful in transforming and simplifying 

operator expressions. We will see their use in a number of instances 

ahead.
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Identities generalization (contd)

For any SKO model
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Mass Matrix Factorization and Inversion 
for SKO models



Recall: Inverting the mass matrix           for serial chains

• All the factors are square in the Innovations Factorization

• So want to look into inverting the mass matrix by inverting its 

factors

• D is block-diagonal, and easy to invert

• We will thus focus on inverting 

Lower triangular with 

identity along block-

diagonal

Upper triangular with 

identity along block-

diagonal

Block-diagonal

69
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Recall: Inverse of 

Claim:

Derivation:

Have general identity

using

Lower triangular with identity 

along block-diagonal
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Generalized Innovations Factorization for SKO models

identity along block-

diagonal

identity along block-

diagonal
Block-diagonal

Triangular structure only for canonical trees
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Innovations factor inversion for SKO models

identity along block-diagonal 

(lower triangular for canonical trees)



73

Mass matrix inverse for SKO models

The mass matrix inverse expression continues to hold 

unchanged for SKO models.



Determinant of the SKO model mass matrix

General expression

Lower triangular with identity 

along block-diagonal for 

canonical trees

Upper triangular with identity 

along block-diagonal for 

canonical trees

Block-diagonal

determinant 1 

scalar for 1 dof hinge

A matrix determinant is the product of the determinant of its square factors

74
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Recursive Forward Dynamics for SKO 
Models
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Recall: Decomposing the     expression for serial-chains 

Breaking down the expression:
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Recall: Overall decomposed expressions

Putting it all together
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Recall: O(N) ATBI forward dynamics algorithm for serial-chains

gather sweep

scatter sweep
O(N) computational 

complexity,  fastest 

available algorithm

ATBI recursion 

from before
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Generalized accels expression for SKO models

Same expression as for serial-chains
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SKO model ATBI quantities
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SKO model O(N) ATBI Forward Dynamics

gather sweep

scatter sweep
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SKO model process for multibody 
systems



SKO models is a BWA matrix

Connectivity structure is a 1-resolvent

NE factorization is a square matrix

Kane’s approach non-square partial velocity 

matrix

Lagrangian approach Opaque, non-singular matrix
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Structure: Insight and Implications

Opens the gates to SOA analysis

Absolute coordinates Non-minimal, explicit

constraints

DAE rabbit hole, sparsity 

structure
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Diverse, but similar SOA solutions

• The answer lies in the SKO model structure

• Recognizing SKO model structure allows us to avoid daunting, 

tedious and repetitious formulation, analysis, and algorithm 

development process over and over for the different systems 

and their combinations

• Given the common patterns that were clear in the SOA based 

mass matrix factorization inversion and algorithm development 

across the different types we have the question: 

What are the common patterns and properties that make the SOA process 

work across such a broad family of system types?
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Diverse, but similar SOA solutions

SKO models are available for a broad class of multibody systems

• Rigid/flex bodies

• Regular and flex joints

• Geared joints

• Branching and loops

• Prescribed and non-prescribed motion

Multibody 

system

SOA Analysis & 

Recursive 

algorithms

Has SKO 

model?

Yes
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SKO model development for a multibody system

First identify a tree-topology structure 
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General SKO models - analysis 

• Velocity expression

• Jacobian

• Mass matrix NE factorization

• Lyapunov equation for CRBs

• Mass matrix decomposition

• Riccati equation for ATBI

• Several operator identities

• Mass matrix Innovations factorization

• Mass matrix determinant

• Mass matrix inverse and factorization

spatial operators 

family

,      ,                          

,    ,            ,    ,    
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General SKO models - Recursive Computational Algorithms

• O(N) Gather and scatter recursions pattern

• O(N) Body velocities scatter recursion

• O(N) CRBs gather recursion

• mass matrix computation

• O(N) NE scatter/gather inverse dynamics

• inverse dynamics based mass matrix

• O(N) CRBs based inverse dynamics

• O(N) ATBI gather recursion

• forward dynamics

• O(N) ATBI forward dynamics

• O(N) hybrid dynamics
While all of this automatically comes for free for SKO models, further optimization of the algorithms is usually 

possible by exploiting the specific structure of the operator elements in the recursion steps.
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When do we not get SKO models 
‘naturally’?
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For systems with loops

• The higher powers of the 

BWA matrix never vanish

• Hence the BWA matrix 

for a system is not 

nilpotent

• Hence the 1-resolvent 

does not exist and so the 

SKO and SPO operators 

do not exist
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For multiply connected systems

• Such systems do not have 

cycles, but have multiply 

connected loops

• The BWA matrix may be 

nilpotent in this case

• However it is not possible to 

define coordinates for the 

multiple paths independently, 

and H is not well defined 

• Hence no SKO model
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Constraint Embedding to the rescue

Constraint embedding transforms a closed-loop system graph into a tree graph

• Minimal coordinate ODE model 

for a closed-loop system

• Tree analytical structure is 

regained

• Well defined non-singular mass 

matrix

• Mass matrix inversion results 

hold again

• Recursive O(N) methods are 

available again as wellThe compound body is a “variable geometry body”!

With closed-loop, mass matrix is singular – paradise lost!

Paradise regained!
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Recap
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Summary

• Built upon BWA concepts to define SKO and SPO operators 

for multibody systems

• Defined the general class of SKO-models for multibody 

systems

• Showed the virtually all the analysis and algorithms 

developed for serial-chain, rigi-body systems carries over to 

SKO models with only minor generalizations

• This opens the door for applying the operator methods and 

algorithms to any multibody system with an SKO model

• As we will see, this is a very broad class of multibody 

systems
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SOA Generalization Track Topics 

8. Graph theory based structure – BWA matrices, connection to multibody 

systems

9. Tree topology systems – generalization to tree topology rigid body systems, 

SKO/SPO operators, gather/scatter algorithms

10.Closed-chain dynamics (cut-joint) – holonomic and non-holonomic 

constraints, cut-joint method, operational space inertia, projected dynamics

11.Closed-chain dynamics (constraint embedding) – constraint embedding for 

graph transformation, minimal coordinate closed-chain dynamics

12.Flexible body dynamics – Extension to flexible bodies, modal 

representations, recursive flexible body dynamics


