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SOA Foundations Track Topics 
(serial-chain rigid body systems)

1. Spatial (6D) notation – spatial velocities, forces, inertias; spatial cross-product, rigid body 

transformations & properties; parallel axis theorem

2. Single rigid body dynamics – equations of motion about arbitrary frame using spatial 

notation

3. Serial-chain kinematics – minimal coordinate formulation, hinges, velocity recursions, 

Jacobians; first spatial operators; O(N) scatter and gather recursions

4. Serial-chain dynamics – equations of motion using spatial operators; Newton–Euler mass 

matrix factorization; O(N) inverse dynamics; composite rigid body inertia; forward Lyapunov

equation; mass matrix decomposition; mass matrix computation; alternative inverse dynamics

5. Articulated body inertia - Concept and definition; Riccati equation; alternative force 

decompositions

6. Mass matrix factorization and inversion – spatial operator identities; Innovations 

factorization of the mass matrix; Inversion of the mass matrix

7. Recursive forward dynamics – O(N) recursive forward dynamics algorithm; including 

gravity and external forces; inter-body forces identity

See https://dartslab.jpl.nasa.gov/References/index.php for publications and 

references on the SOA methodology.

https://dartslab.jpl.nasa.gov/References/index.php
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Recap
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Recap

• Developed articulated body model for the 

decomposition of forces

• Defined articulated body inertias and related 

quantities

• Derived expression for residual forces

• Developed O(N) gather algorithm for computing 

these quantities

• Described parallels with estimation theory
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How far have we come?
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Spatial operators

• Velocity expression

• Jacobian

• Mass matrix NE factorization

• Lyapunov equation for CRBs

• Mass matrix decomposition

,      ,    

spatial operators 

family

Have started to build up a vocabulary of spatial operators that  

can be used to express and manipulate the structure of 

dynamics quantities.
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Recursive Computational Algorithms

• O(N) Gather and scatter recursions pattern

• O(N) Body velocities scatter recursion

• O(N) CRBs gather recursion

• mass matrix computation

• O(N) NE scatter/gather inverse dynamics

• inverse dynamics based mass matrix

• O(N) CRBs based inverse dynamics

• O(N) ATBI gather recursion

Can derive such low-cost scatter/gather algorithms usually 

by examination of the spatial operator expressions.
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Articulated Body Inertia
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Inter-body spatial force decompositions

• Force decompositions consist of inertia + residual terms

• From the equations of motion we had 

• Using CRBs we have

• Using ATBI we have

depends on 

kth body depends on all bodies

depends on 

outboard bodies only

depends on outboard

generalized accels

depends on 

outboard bodies only

depends on outboard

generalized forces
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Defining

Defined the articulated body transformation matrix

• is a 6x6 matrix like 

• However it is typically singular

• It depends on hinge properties

• Unlike                    which propagates across rigid bodies,                    

propagates across articulated bodies
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Articulated body inertias algorithm

O(N) tip-to-base gather algorithm for ATBI quantities
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Articulated Body Inertia Spatial Operators
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ATBI spatial operators

Now define spatial operators using the ATBI quantities
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Structure of the      spatial operator 

has the same structure as 

Only non-zero entries are along the first sub-diagonal

block diagonal
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Structure of 

also has the same structure as 

has same structure as

block diagonal



16

Like      ,       is nilpotent

• Every power of        results in a matrix with the sub-diagonal shifted one step lower

• At the nth power, the result is zero:   

• Hence         is nilpotent!
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Structural properties of 

• Strictly lower triangular, 

square, singular and 

nilpotent, 

• Only the first sub-diagonal 

has nonzero elements

• The non-zero entries are the 

configuration dependent 

6x6 inter-link articulated 

body transformation matrices 

(configuration dependent)
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Recall: Nilpotent matrices & inverses

• A square matrix      is said to be nilpotent if 

one of its powers becomes 0, i.e. if for some n

• For a nilpotent     , we have

Series expansion truncates after only a finite number of terms for 

nilpotent matrix, hence the 1-resolvent inverse is well defined

1-resolvent
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Is the 1-resolvent of 

Analogous to

define



20

Spatial operator

Analogous to

and

define

Same as     , except 

diagonal elements are now 

zero matrices 

Same as     , except 

diagonal elements are now 

zero matrices 
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Articulated vs Composite Body Models
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Comparison of composite and articulated body models
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Scatter Recursions for     same 
as for  
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Recall: Base-to-tips structure-based 
O(N) scatter recursion for

O(N) structure-based, base-to-tip 

scatter recursion

Algorithm flow

operator transpose/vector product

• Applies to any x

• Does not require explicit 

computation of       at all

• Only depends on elements of 

Example – link velocity computation



Generalized base-to-tips structure-based 
scatter recursion

O(N) structure-based 

scatter algorithm

Algorithm flow

operator transpose/vector product

• Applies to any x

• Does not require explicit 

computation of       at all

• Only depends on elements of 

25
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Gather Recursions for     same as for  
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Recall: Tips-to-base structure-based 
O(N) gather recursion for 

O(N) structure-based tip-

to-base gather recursion

Algorithm flow

operator/vector product

• Applies to any x

• Does not require explicit 

computation of       at all

• Only depends on elements of 

Example – torque for end-effector force



Generalized tips-to-base structure-based 
gather recursion

O(N) structure-based 

gather algorithm

Algorithm flow

operator/vector product

• Applies to any x

• Does not require explicit 

computation of       at all

• Only depends on elements of 

28
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ATBI Riccati Equation
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Recall: Forward Lyapunov Equation for CRBs

Define CRB spatial operator

CRB recursion

Can re-express as CRB “forward Lyapunov

equation” using spatial operators
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Riccati equation for ATBI

The ATBI recursion

can be re-expressed at the operator level as

Similar to Lyapunov equation
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ATBI operator identity

Claim:

Derivation:

Have



Recall: Operator decomposition of 

Claim:

Derivation:

and thus pre & post multiplying
use identity

33
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Operator decomposition of 

Claim:

Derivation:

use identity

strictly lower 

triangular
block-diagonal

strictly upper 

triangular

disjoint 

decomposition

Previously

use
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Operator Identities
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Identities relating 

Now we will establish a sequence of identities that 

illustrate a close relationship between the             

spatial operators.
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Identity:   

Claim:

Derivation:
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More identities

Claim:

Derivation:

These follow by pre & post multiplying the following identity 

by 
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… and some more identities

Claim:

Derivation:

For the first identity, 

use identity
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Identities recap

These identities are very useful in transforming and 

simplifying operator expressions. We will see their 

use in a number of instances ahead.
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Identity
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Expression for 

Claim:

Derivation:
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Comparison of operator expressions

Earlier mass matrix expression

versus similar expression

block-diagonal

dense

The only difference is the use of     instead of    !

Complex product of spatial 

operators collapses into 

just D!
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Mass Matrix Innovations Factorization



Recall: The Newton-Euler Factorization of the mass matrix

• Square, symmetric and positive definite

• Size is the number of degrees of freedom 

• The mass matrix is configuration dependent

• Dense matrix for serial chain systems
• key reason for its perceived “complexity”

• Maps generalized velocities to system kinetic energy

• Not all of the operators in the Newton-Euler 

factorization of the mass matrix are square
• Will encounter other factorizations with square factors

• Elements of             are Kane’s partial velocities
45
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Innovations Factorization of the mass matrix

Claim:

Derivation:

Innovations Factorization

use identity

use identity



Properties of the Innovations Factorization of the mass matrix

• In the Newton-Euler factorization of the mass matrix, 

not all the factors were square

• However all the factors are square in the Innovations 

Factorization

• Moreover, the factors have block-triangular and block-

diagonal structure

• And as we will see, they are easy to invert!

Lower triangular with 

identity along block-

diagonal

Upper triangular with 

identity along block-

diagonal

Block-diagonal

47



Implications for forward dynamics

• Forward dynamics involves computing

With the NE factorization our options were limited to  

complexity

• The new factors however can be computed at           cost

• More these factors can be used to compute                       

at             cost as well.

• This is progress - exploitation of the underlying structure 

has reduced computational costs – again!

Lower triangular with 

identity along block-

diagonal

Upper triangular with 

identity along block-

diagonal

Block-diagonal
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Recall: Trace of the mass matrix

General expression

For 1 dof hinges

zero trace
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Determinant of the mass matrix

General expression

Lower triangular with 

identity along block-

diagonal

Upper triangular with 

identity along block-

diagonal

Block-diagonal

determinant 1 

scalar for 1 dof hinge

The determinant of a matrix is the product of the determinant of its square factors

50
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Application of mass matrix determinant: Fixman Potential

The Fixman potential is needed in molecular dynamics simulations for 
correcting statistical biases

Torque from the 

Fixman potential

Computing and using it 

has been an intractable 

problem for decades

Explicit simple expression via SOA for longstanding intractable problem.

Available from standard 

ATBI computations
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More operator decompositions
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Decomposition of

Previously

Derivation:

Claim:

Have

Pre and post multiply by            to get 

strictly lower 

triangular
block-diagonal

strictly upper 

triangular
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Another decomposition of

Claim:

Derivation:

Previously

strictly lower 

triangular
block-diagonal strictly upper 

triangular
dense

using CRBs

using ATBIs

This is an alternative decomposition using ATBIs.
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CRB vs ATBI comparison

Claim:

SHOW!

Hint: use results 

on previous slide
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Inversion of the Mass Matrix



Inverting the mass matrix

• All the factors are square in the Innovations Factorization

• So want to look into inverting the mass matrix by 

inverting its factors

• D is block-diagonal, and easy to invert

• We will thus focus on inverting 

Lower triangular with 

identity along block-

diagonal

Upper triangular with 

identity along block-

diagonal

Block-diagonal
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Inverse of 

Claim:

Derivation:

Have general matrix identity

using

Lower triangular with identity 

along block-diagonal
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Mass matrix inverse

Claim:

Derivation:

using
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Comments on mass matrix inverse

• Analytical, closed-form expression for the mass matrix using 

spatial operators

• The factors are square and invertible – and have diagonal 

and triangular structure

• The expression is valid for any size system and branching 

structure

Upper triangular with 

identity along block-

diagonal

Lower triangular with 

identity along block-

diagonal

Block-diagonal



Progression with the Mass Matrix

Analytical operator expression for the mass matrix inverse

Analytical Newton-Euler 

factorization of the  mass matrix 

Analytical Innovations 

factorization of the  mass 

matrix 

61
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How far have we come?
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Spatial operators

• Velocity expression

• Jacobian

• Mass matrix NE factorization

• Lyapunov equation for CRBs

• Mass matrix decomposition

• Riccati equation for ATBI

• Several operator identities

• Mass matrix Innovations factorization

• Mass matrix determinant

• Mass matrix inverse and factorization

spatial operators 

family

,      ,                          

,    ,            ,    ,    

Have started to build up a vocabulary of spatial operators that  can be used 

to express and manipulate the structure of dynamics quantities.

Now can see the rationale for the algebra part of SOA from the analytical 

transformations and simplifications possible using the operators.  
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Recursive Computational Algorithms

• O(N) Gather and scatter recursions pattern

• O(N) Body velocities scatter recursion

• O(N) CRBs gather recursion

• mass matrix computation

• O(N) NE scatter/gather inverse dynamics

• inverse dynamics based mass matrix

• O(N) CRBs based inverse dynamics

• O(N) ATBI gather recursion

• forward dynamics

Can derive such low-cost scatter/gather algorithms usually 

by examination of the spatial operator expressions.
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Summary

• Introduced ATBI spatial operators

• Developed several operator identities

• Developed Innovations Factorization of the 

mass matrix

• Has square and invertible factors

• Can reduce forward dynamics costs

• Developed expression for inverse of factors

• Developed operator expression for the 

mass matrix inverse
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SOA Foundations Track Topics 
(serial-chain rigid body systems)

1. Spatial (6D) notation – spatial velocities, forces, inertias; spatial cross-product, rigid 

body transformations & properties; parallel axis theorem

2. Single rigid body dynamics – equations of motion about arbitrary frame using spatial 

notation

3. Serial-chain kinematics – minimal coordinate formulation, hinges, velocity recursions, 

Jacobians; first spatial operators; O(N) scatter and gather recursions

4. Serial-chain dynamics – equations of motion using spatial operators; Newton–Euler 

mass matrix factorization; O(N) inverse dynamics; composite rigid body inertia; forward 

Lyapunov equation; mass matrix decomposition; mass matrix computation; alternative 

inverse dynamics

5. Articulated body inertia - Concept and definition; Riccati equation; alternative force 

decompositions

6. Mass matrix factorization and inversion – spatial operator identities; Innovations 

factorization of the mass matrix; Inversion of the mass matrix

7. Recursive forward dynamics – O(N) recursive forward dynamics algorithm; including 

gravity and external forces; inter-body forces identity
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SOA Generalization Track Topics 

8. Graph theory based structure – BWA matrices, connection to multibody 

systems

9. Tree topology systems – generalization to tree topology rigid body systems, 

SKO/SPO operators, gather/scatter algorithms

10.Closed-chain dynamics (cut-joint) – holonomic and non-holonomic 

constraints, cut-joint method, operational space inertia, projected dynamics

11.Closed-chain dynamics (constraint embedding) – constraint embedding for 

graph transformation, minimal coordinate closed-chain dynamics

12.Flexible body dynamics – Extension to flexible bodies, modal 

representations, recursive flexible body dynamics
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SOA Generalization Track Topics 

1. Graph theory based structure – BWA matrices, SKO and SPO operators

2. Tree topology systems – generalization to tree topology rigid body systems, 

gather/scatter algorithms

3. Operational space dynamics – dynamics in task/constraint space, operational space 

inertia, decomposition and recursive computation

4. Closed-chain dynamics (cut-joint) – holonomic and non-holonomic constraints, cut-

joint method, move and squeeze forces, projected dynamics

5. Graph transformations – Multibody topology transformation and decomposition, 

aggregation

6. Closed-chain dynamics (constraint embedding) – constraint embedding for graph 

transformation, minimal coordinate closed-chain dynamics

7. Flexible body dynamics – Extension to flexible bodies, modal representations, 

recursive flexible body dynamics

8. Numerical methods and integrators (Radu Serban) – ODE and DAE integration for 

multibody dynamics


