

Dynamics and Real-Time Simulation (DARTS) Laboratory

Spatial Operator Algebra (SOA)

6. Mass Matrix Inverse

Abhinandan Jain

June 19, 2024

<https://dartslab.jpl.nasa.gov/>

Jet Propulsion Laboratory California Institute of Technology

SOA Foundations Track Topics (serial-chain rigid body systems)

- **1. Spatial (6D) notation** spatial velocities, forces, inertias; spatial cross-product, rigid body transformations & properties; parallel axis theorem
- **2. Single rigid body dynamics** equations of motion about arbitrary frame using spatial notation
- **3. Serial-chain kinematics** minimal coordinate formulation, hinges, velocity recursions, Jacobians; first spatial operators; O(N) scatter and gather recursions
- **4. Serial-chain dynamics** equations of motion using spatial operators; Newton–Euler mass matrix factorization; O(N) inverse dynamics; composite rigid body inertia; forward Lyapunov equation; mass matrix decomposition; mass matrix computation; alternative inverse dynamics
- **5. Articulated body inertia -** Concept and definition; Riccati equation; alternative force decompositions
- **6. Mass matrix factorization and inversion** spatial operator identities; Innovations factorization of the mass matrix; Inversion of the mass matrix
- **7. Recursive forward dynamics** O(N) recursive forward dynamics algorithm; including gravity and external forces; inter-body forces identity

See <https://dartslab.jpl.nasa.gov/References/index.php> for publications and references on the SOA methodology.

Recap

Recap

- Developed articulated body model for the decomposition of forces
	- Defined articulated body inertias and related quantities
	- Derived expression for residual forces
	- Developed O(N) gather algorithm for computing these quantities
- Described parallels with estimation theory

How far have we come?

6

family Have started to build up a vocabulary of spatial operators that can be used to express and manipulate the structure of dynamics quantities.

Spatial operators

- Velocity expression
- Jacobian
- Mass matrix NE factorization
- Lyapunov equation for CRBs
- Mass matrix decomposition

spatial operators

Recursive Computational Algorithms

- O(N) Gather and scatter recursions pattern
- O(N) Body velocities scatter recursion
- O(N) CRBs gather recursion
- $O(N^2)$ mass matrix computation
- O(N) NE scatter/gather inverse dynamics
- $O(N^2)$ inverse dynamics based mass matrix
- O(N) CRBs based inverse dynamics
- O(N) ATBI gather recursion

Can derive such low-cost scatter/gather algorithms usually by examination of the spatial operator expressions.

Articulated Body Inertia

Inter-body spatial force decompositions

- Force decompositions consist of inertia + residual terms
- From the equations of motion we had

$$
\mathfrak{f}(k) = M(k)\alpha(k) + \varphi(k, k-1)\mathfrak{f}(k-1)
$$

depends on

kth body depends on all bodies

• Using CRBs we have

$$
f(k) = \mathcal{R}(k)\alpha(k) + y(k)
$$

depends on
outboard bodies only generalized accels

• Using ATBI we have

$$
\mathfrak{f}(k) = \mathfrak{P}_\mathfrak{f}(k)\alpha(k) + \mathfrak{z}(\mathfrak{k})
$$

depends on outboard bodies only *depends on outboard generalized forces*

Defining $\psi(k+1, k)$

Defined the *articulated body transformation matrix*

$$
\psi(k+1,k)\ \stackrel{\triangle}{=}\ \varphi(k+1,k)\overline{\tau}(k)
$$

- $\psi(k+1, k)$ is a 6x6 matrix like $\phi(k+1, k)$
- However it is typically singular
- It depends on hinge properties
- Unlike $\varphi(k+1, k)$ which propagates across rigid bodies, $\psi(k+1, k)$ propagates across articulated bodies

Articulated body inertias algorithm

O(N) tip-to-base gather algorithm for ATBI quantities

$$
\begin{aligned}\n\mathcal{P}^+(0) &= \mathbf{0}, \quad \overline{\tau}(0) = \mathbf{0} \\
\text{for } k \quad 1 \cdots \mathbf{n} \\
\psi(k, k-1) &= \phi(k, k-1)\overline{\tau}(k-1) \\
\mathcal{P}(k) &= \phi(k, k-1)\mathcal{P}^+(k-1)\phi^*(k, k-1) + M(k) \\
\mathcal{D}(k) &= H(k)\mathcal{P}(k)H^*(k) \\
\mathcal{G}(k) &= \mathcal{P}(k)H^*(k)\mathcal{D}^{-1}(k) \\
\mathcal{K}(k+1, k) &= \phi(k+1, k)\mathcal{G}(k) \\
\overline{\tau}(k) &= \mathbf{I} - \mathcal{G}(k)H(k) \\
\mathcal{P}^+(k) &= \overline{\tau}(k)\mathcal{P}(k)\n\end{aligned}
$$

Tip to base articulated body sweep

end loop

Articulated Body Inertia Spatial Operators

ATBI spatial operators

Now define spatial operators using the ATBI quantities

$$
\mathcal{P} \stackrel{\triangle}{=} \text{diag}\left\{\mathcal{P}(k)\right\}_{k=1}^{n} \in \mathcal{R}^{6n \times 6n}
$$
\n
$$
\mathcal{D} \stackrel{\triangle}{=} \text{diag}\left\{\mathcal{D}(k)\right\}_{k=1}^{n} = H\mathcal{P}H^{*} \qquad \in \mathcal{R}^{N \times N}
$$
\n
$$
\mathcal{G} \stackrel{\triangle}{=} \text{diag}\left\{\mathcal{G}(k)\right\}_{k=1}^{n} = \mathcal{P}H^{*}\mathcal{D}^{-1} \qquad \in \mathcal{R}^{6n \times N}
$$
\n
$$
\mathcal{K} \stackrel{\triangle}{=} \mathcal{E}_{\varphi}\mathcal{G} \qquad \in \mathcal{R}^{6n \times N}
$$
\n
$$
\tau \stackrel{\triangle}{=} \text{diag}\left\{\tau(k)\right\}_{k=1}^{n} = gH \qquad \in \mathcal{R}^{6n \times 6n}
$$
\n
$$
\overline{\tau} \stackrel{\triangle}{=} \text{diag}\left\{\overline{\tau}(k)\right\}_{k=1}^{n} = I - \tau \qquad \in \mathcal{R}^{6n \times 6n}
$$
\n
$$
\mathcal{P}^{+} \stackrel{\triangle}{=} \text{diag}\left\{\mathcal{P}^{+}(k)\right\}_{k=1}^{n} = \overline{\tau}\mathcal{P}\overline{\tau}^{*} = \overline{\tau}\mathcal{P} = \mathcal{P}\overline{\tau}^{*} \qquad \in \mathcal{R}^{6n \times 6n}
$$
\n
$$
\mathcal{E}_{\psi} \stackrel{\triangle}{=} \mathcal{E}_{\varphi}\overline{\tau} \qquad \in \mathcal{R}^{6n \times 6n}
$$

Structure of the K **spatial operator**

 $\mathcal K$ has the same structure as $\mathcal E_{\Phi}$

$$
\mathcal{K} \stackrel{\triangle}{=} \mathcal{E}_{\Phi} \mathcal{G} \begin{bmatrix} \mathcal{K}(k+1,k) = \varphi(k+1,k) \mathcal{G}(1) \\ \text{block diagonal} \\ \mathcal{K} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ \mathcal{K}(2,1) & 0 & \dots & 0 & 0 \\ 0 & \mathcal{K}(3,2) & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \mathcal{K}(n,n-1) & 0 \end{pmatrix}
$$

Only non-zero entries are along the first sub-diagonal

Structure of \mathcal{E}_{ψ}

 \mathcal{E}_{ψ} also has the same structure as \mathcal{E}_{ϕ}

$$
\mathcal{E}_{\psi} \stackrel{\triangle}{=} \mathcal{E}_{\varphi} \overline{\tau}_{\psi(k+1,k)} \stackrel{\triangle}{=} \varphi(k+1,k) \overline{\tau}(k)
$$

\n
$$
\mathcal{E}_{\psi} = \begin{pmatrix}\n0 & 0 & 0 & 0 & 0 \\
\psi(2,1) & 0 & \dots & 0 & 0 \\
0 & \psi(3,2) & \dots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \dots & \psi(n,n-1) & 0\n\end{pmatrix}
$$

\n
$$
\mathcal{E}_{\psi}
$$
 has same structure as \mathcal{E}_{φ}

15

Like \mathcal{E}_{Φ} , \mathcal{E}_{Ψ} is nilpotent

 $\overline{\tau}$

$$
\mathcal{E}_{\psi} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ \psi(2,1) & 0 & \cdots & 0 & 0 \\ 0 & \psi(3,2) & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \psi(n,n-1) & 0 \end{pmatrix} \qquad \overline{\mathcal{E}_{\psi}} \stackrel{\triangle}{=} \mathcal{E}_{\varphi}
$$

Every power of \mathcal{E}_{ψ} results in a matrix with the sub-diagonal shifted one step lower

$$
\mathcal{E}_{\mathbb{A}} = \left(\begin{matrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{matrix}\right), \ \ \mathcal{E}_{\mathbb{A}}^2 = \left(\begin{matrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{matrix}\right), \ \ \mathcal{E}_{\mathbb{A}}^3 = \left(\begin{matrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{matrix}\right)
$$

- At the nth power, the result is zero: $\mathcal{E}_{\psi}^{n} = 0$
- Hence \mathcal{E}_{ψ} is **nilpotent!**

Structural properties of

- Strictly lower triangular, square, singular and nilpotent,
- Only the first sub-diagonal has nonzero elements
- The non-zero entries are the **configuration dependent** 6x6 inter-link articulated body transformation matrices (configuration dependent)

Recall: Nilpotent matrices & inverses

• A square matrix U is said to be nilpotent if one of its powers becomes 0, i.e. if for some n

 $U^{n} = 0$

• For a nilpotent U, we have

$$
(I - U)^{-1} = I + U + U^2 + \cdots + U^{n-1}
$$

1-resolvent

Series expansion truncates after only a finite number of terms for nilpotent matrix, hence the 1-resolvent inverse is well defined

ψ **Is the 1-resolvent of** \mathcal{E}_{ψ}

Analogous to

$$
\varphi \stackrel{\triangle}{=} (I - \mathcal{E}_{\varphi})^{-1} = I + \mathcal{E}_{\varphi} + \mathcal{E}_{\varphi}^2 + \, \cdots \, + \mathcal{E}_{\varphi}^{n-1}
$$

$$
\varphi(i,j) = \varphi(i,i-1) \cdots \varphi(j+1,j)
$$

define

$$
\psi \stackrel{\triangle}{=} (\mathbf{I} - \mathcal{E}_{\psi})^{-1} = \mathbf{I} + \mathcal{E}_{\psi} + \mathcal{E}_{\psi}^{2} + \cdots + \mathcal{E}_{\psi}^{n-1}
$$
\n
$$
= \begin{pmatrix}\n\mathbf{I} & \mathbf{0} & \cdots & \mathbf{0} \\
\psi(2,1) & \mathbf{I} & \cdots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots \\
\psi(n,1) & \psi(n,2) & \cdots & \mathbf{I}\n\end{pmatrix}
$$

$$
\psi(i,j) \stackrel{\triangle}{=} \psi(i,i-1) \cdots \psi(j+1,j) \text{ for } i > j
$$

Analogous to

$$
\tilde{\varphi} \ \stackrel{\triangle}{=} \ \varphi - I
$$

Same as φ , except *diagonal elements are now zero matrices*

and

$$
\tilde{\varphi}=\mathcal{E}_{\varphi}\varphi=\varphi\mathcal{E}_{\varphi}
$$

define

$$
\left[\begin{matrix}\widetilde{\psi} & \stackrel{\triangle}{=}& \psi \mathcal{E}_{\psi}=\mathcal{E}_{\psi}\psi=\psi-I\end{matrix}\right]\stackrel{\text{Same as }\psi\text{, except}}{\text{zero matrices}}
$$

Articulated vs Composite Body Models

Comparison of composite and articulated body models

Scatter Recursions for same as for

ψ

Recall: Base-to-tips structure-based O(N) scatter recursion for ϕ

operator transpose/vector product

Example – link velocity computation

O(N) structure-based, base-to-tip scatter recursion

Generalized base-to-tips structure-based scatter recursion

Jet Propulsion Laboratory California Institute of Technology

O(N) structure-based scatter algorithm

Gather Recursions for ψ **same as for** φ

Recall: Tips-to-base structure-based O(N) gather recursion for

operator/vector product

O(N) structure-based tipto-base gather recursion

Example – torque for end-effector force

Generalized tips-to-base structure-based gather recursion

 $y(1)$

 $A(k, j)y(j)$

 $+x(k)$

operator/vector product

$$
\boxed{y = Ax} \boxed{A = \varphi, \psi}
$$

• *Applies to any x*

• *Does not require explicit computation of* A *at all*

• *Only depends on elements of*

$$
\text{for all nodes } \mathbf{k} \text{ (tips-to-base gather)} \quad \text{and} \quad \mathbf{y}(\mathbf{k}) = \sum_{k=1}^{\infty} \mathbb{A}(\mathbf{k}, \mathbf{i}) \mathbf{y}(\mathbf{i}) + \mathbf{x}(\mathbf{k}) \quad \text{and} \quad \mathbf{y}(\mathbf{k}) = \sum_{k=1}^{\infty} \mathbb{A}(\mathbf{k}, \mathbf{i}) \mathbf{y}(\mathbf{i}) + \mathbf{x}(\mathbf{k}) \quad \text{and} \quad \mathbf{y}(\mathbf{k}) = \sum_{k=1}^{\infty} \mathbb{A}(\mathbf{k}, \mathbf{i}) \mathbf{y}(\mathbf{i}) + \mathbf{x}(\mathbf{k}) \quad \text{and} \quad \mathbf{y}(\mathbf{k}) = \sum_{k=1}^{\infty} \mathbb{A}(\mathbf{k}, \mathbf{i}) \mathbf{y}(\mathbf{i}) + \mathbf{x}(\mathbf{k}) \quad \text{and} \quad \mathbf{y}(\mathbf{k}) = \sum_{k=1}^{\infty} \mathbb{A}(\mathbf{k}, \mathbf{i}) \mathbf{y}(\mathbf{i}) + \mathbf{x}(\mathbf{k}) \quad \text{and} \quad \mathbf{y}(\mathbf{k}) = \sum_{k=1}^{\infty} \mathbb{A}(\mathbf{k}, \mathbf{i}) \mathbf{y}(\mathbf{i}) + \mathbf{x}(\mathbf{k}) \quad \text{and} \quad \mathbf{y}(\mathbf{k}) = \sum_{k=1}^{\infty} \mathbb{A}(\mathbf{k}, \mathbf{i}) \mathbf{y}(\mathbf{i}) + \mathbf{x}(\mathbf{k}) \quad \text{and} \quad \mathbf{y}(\mathbf{k}) = \sum_{k=1}^{\infty} \mathbb{A}(\mathbf{k}, \mathbf{i}) \mathbf{y}(\mathbf{i}) + \mathbf{x}(\mathbf{k}) \quad \text{and} \quad \mathbf{y}(\mathbf{k}) = \sum_{k=1}^{\infty} \mathbb{A}(\mathbf{k}, \mathbf{i}) \mathbf{y}(\mathbf{i}) + \mathbf{x}(\mathbf{k}) \quad \text{and} \quad \mathbf{y}(\mathbf{k}) = \sum_{k=1}^{\infty} \mathbb{A}(\mathbf{k}, \mathbf{i}) \mathbf{y}(\mathbf{i}) + \mathbf{x}(\mathbf{k}) \quad \text{and} \quad \mathbf{y}(\mathbf{k}) = \sum_{k=1}
$$

$$
y(\kappa) = \sum_{\forall i \in \mathbf{C}(\kappa)} A(\kappa, i) y(i) +
$$

Algorithm flow

 $y(n)$

n

 $y(k) =$

 $\sum_{\forall j \in \mathbf{C}(\mathbf{k})}$

 $y = Ax$

Tips-to-base

gather

recursion

Jet Propulsion Laboratory California Institute of Technology

O(N) structure-based gather algorithm

end loop

ATBI Riccati Equation

Recall: Forward Lyapunov Equation for CRBs

CRB recursion

$$
\mathcal{R}(k)=\varphi(k,k-1)\mathcal{R}(k-1)\varphi^*(k,k-1)+M(k)
$$

Define CRB spatial operator

$$
\mathcal{R} \ \stackrel{\triangle}{=} \ \operatorname{diag} \left\{ \mathcal{R}(k) \right\}_{k=1}^n \in \mathcal{R}^{6n \times 6n}
$$

Can re-express as CRB "forward Lyapunov equation" using spatial operators

$$
M=\mathcal{R}-\mathcal{E}_\varphi\mathcal{R}\mathcal{E}_\varphi^*
$$

Riccati equation for ATBI

Similar to Lyapunov equation

$$
M=\mathcal{R}-\mathcal{E}_\varphi\mathcal{R}\mathcal{E}_\varphi^*
$$

The ATBI recursion

$$
\mathcal{P}(k+1) \stackrel{6.32}{=} \psi(k+1,k) \mathcal{P}(k) \psi^*(k+1,k) + \bm{M}(k+1)
$$

can be re-expressed at the operator level as

$$
M=\mathcal{P}-\mathcal{E}_{\psi}\mathcal{P}\mathcal{E}_{\psi}^*=\mathcal{P}-\mathcal{E}_{\psi}\mathcal{P}\mathcal{E}_{\varphi}^*\Big|
$$

ATBI operator identity

Claim:

$$
\boxed{\mathcal{E}_{\psi}\mathcal{P}\mathcal{E}_{\psi}^* \ = \mathcal{E}_{\psi}\mathcal{P}\mathcal{E}_{\varphi}^*}
$$

Derivation:

 $\mathcal{P}(k)\overline{\tau}^*(k) = \overline{\tau}(k)\mathcal{P}(k) = \overline{\tau}(k)\mathcal{P}(k)\overline{\tau}^*(k)$ **Have**

$$
\mathcal{E}_{\psi} \mathcal{P} \mathcal{E}_{\psi}^* \stackrel{7.3}{\equiv} \mathcal{E}_{\psi} \mathcal{P} \overline{\tau}^* \mathcal{E}_{\varphi}^* \stackrel{7.3}{\equiv} \mathcal{E}_{\psi} \overline{\tau} \mathcal{P} \mathcal{E}_{\varphi}^* \stackrel{7.3}{\equiv} \mathcal{E}_{\varphi} \overline{\tau} \overline{\tau} \mathcal{P} \mathcal{E}_{\varphi}^* = \mathcal{E}_{\psi} \mathcal{P} \mathcal{E}_{\varphi}^*
$$

Recall: Operator decomposition of

Claim:

$$
\varphi M\varphi^*=\mathcal{R}+\tilde{\varphi}\mathcal{R}+\mathcal{R}\tilde{\varphi}^*
$$

Derivation:

$$
M = \mathcal{R} - \mathcal{E}_{\Phi} \mathcal{R} \mathcal{E}_{\Phi}^*
$$

and thus pre & post multiplying

$$
\text{use identity} \\ \tilde{\varphi} \stackrel{\triangle}{=} \varphi - I = \mathcal{E}_{\varphi} \varphi
$$

$$
\begin{array}{rcl}\varphi{\bf{M}}\varphi^{*} & \stackrel{4.9}{=} & \varphi{\mathcal{R}}\varphi^{*}-\varphi{\mathcal{E}}_{\varphi}{\mathcal{R}}{\mathcal{E}}_{\varphi}^{*}\varphi^{*} \stackrel{3.41}{=} & \varphi{\mathcal{R}}\varphi^{*}-\tilde{\varphi}{\mathcal{R}}\tilde{\varphi}^{*} \\ & \stackrel{3.40}{=} & (\tilde{\varphi}+{\bf{I}}){\mathcal{R}}(\tilde{\varphi}+{\bf{I}})-\tilde{\varphi}{\mathcal{R}}\tilde{\varphi}^{*} \stackrel{3.40}{=} & {\mathcal{R}}+\tilde{\varphi}{\mathcal{R}}+{\mathcal{R}}\tilde{\varphi}^{*}\end{array}
$$

Operator decomposition of $\psi M \psi^*$

Previously
$$
\phi M \phi^* = \mathcal{R} + \tilde{\phi} \mathcal{R} + \mathcal{R} \tilde{\phi}^*
$$

34

Operator Identities

Now we will establish a sequence of identities that illustrate a close relationship between the ϕ , ψ spatial operators.

Claim:
\n
$$
\boxed{\psi^{-1} - \phi^{-1} = \mathcal{K}H}
$$
\n**Derivation:**
\n
$$
\psi^{-1} = \mathbf{I} - \mathcal{E}_{\psi} \stackrel{7.3}{=} \mathbf{I} - \mathcal{E}_{\phi}\overline{\tau} \stackrel{7.3}{=} (\mathbf{I} - \mathcal{E}_{\phi}) + \mathcal{E}_{\phi}\overline{\tau}
$$
\n
$$
\stackrel{3.36,7.3}{=} \phi^{-1} + \mathcal{E}_{\phi}\mathcal{G}H \stackrel{7.3}{=} \phi^{-1} + \mathcal{K}H
$$

Identity: $\psi^{-1} - \phi^{-1} = \mathcal{K}H$

More identities

Claim:

$$
\psi^{-1}\phi = I + \mathcal{K}H\phi
$$

$$
\phi\psi^{-1} = I + \phi\mathcal{K}H
$$

$$
\phi^{-1}\psi = I - \mathcal{K}H\psi
$$

$$
\psi\phi^{-1} = I - \psi\mathcal{K}H
$$

Derivation:

These follow by pre & post multiplying the following identity by ϕ , ψ $\psi^{-1} - \phi^{-1} = \mathcal{K}H$

For the first identity,

Claim:

$$
[\mathbf{I} - \mathbf{H}\psi \mathcal{K}]\mathbf{H}\phi = \mathbf{H}\psi
$$

$$
\phi \mathcal{K}[\mathbf{I} - \mathbf{H}\psi \mathcal{K}] = \psi \mathcal{K}
$$

$$
[\mathbf{I} + \mathbf{H}\phi \mathcal{K}]\mathbf{H}\psi = \mathbf{H}\phi
$$

$$
\psi \mathcal{K}[\mathbf{I} + \mathbf{H}\phi \mathcal{K}] = \phi \mathcal{K}
$$

Derivation:

use identity $\psi \phi^{-1} = I - \psi \mathcal{K} H$

 $[I - H\psi\mathcal{K}]H\phi = H[I - \psi\mathcal{K}H]\phi$ ^{7.11} $H(\psi\phi^{-1})\phi = H\psi$

Identities recap

$$
\boxed{\psi^{-1}-\varphi^{-1}=\mathfrak{K}H}
$$

$$
\psi^{-1}\phi = I + \mathcal{K}H\phi
$$

$$
\phi\psi^{-1} = I + \phi\mathcal{K}H
$$

$$
\phi^{-1}\psi = I - \mathcal{K}H\psi
$$

$$
\psi\phi^{-1} = I - \psi\mathcal{K}H
$$

 $\begin{aligned} [\mathbf{I}-\mathbf{H}\boldsymbol{\psi}\mathcal{K}]\mathbf{H}\boldsymbol{\phi} &= \mathbf{H}\boldsymbol{\psi} \\ \boldsymbol{\phi}\mathcal{K}[\mathbf{I}-\mathbf{H}\boldsymbol{\psi}\mathcal{K}] &= \boldsymbol{\psi}\mathcal{K} \end{aligned}$ $[I + H\phi\mathcal{K}]H\psi = H\phi$
 $\psi\mathcal{K}[I + H\phi\mathcal{K}] = \phi\mathcal{K}$

These identities are very useful in transforming and simplifying operator expressions. We will see their use in a number of instances ahead.

Identity ΗψΜψ^{*}Η^{*} = **D**

Expression for

Claim:

$$
\overline{H\psi M\psi^*H^*=\mathcal{D}}
$$

Derivation:

$$
H\psi M\psi^*H^* \stackrel{7.7}{=} H(\mathcal{P} + \tilde{\psi}\mathcal{P} + \mathcal{P}\tilde{\psi}^*)H^* \stackrel{7.3}{=} \mathcal{D} + H\tilde{\psi}\mathcal{P}H^* + H\mathcal{P}\tilde{\psi}^*H^*
$$
\n
$$
\stackrel{7.8}{=} \mathcal{D} + H\psi \mathcal{E}_{\psi} \mathcal{P}H^* + H\mathcal{P}\mathcal{E}_{\psi}^* \psi^*H^*
$$
\n
$$
\stackrel{7.3}{=} \mathcal{D} + H\psi \mathcal{E}_{\phi} \overline{\tau} \mathcal{P}H^* + H\mathcal{P}\overline{\tau}^* \mathcal{E}_{\phi}^* \psi^*H^*
$$
\n
$$
\stackrel{7.3}{=} \mathcal{D} + H\psi \mathcal{E}_{\phi} \mathcal{P}^+H^* + H\mathcal{P}^+ \mathcal{E}_{\phi}^* \psi^*H^*
$$
\n
$$
\stackrel{6.28}{=} \mathcal{D}
$$

Comparison of operator expressions

Earlier mass matrix expression

$$
\mathcal{M}(\theta) \triangleq H\varphi \mathbf{M} \varphi^* H^* \Big| \text{ dense}
$$

versus similar expression

$$
block-diagonal \quad \boxed{\text{H}\psi\text{M}\psi^*\text{H}^* = \text{D}} \quad \text{Complex product of spatial} \\ \text{operators collapses into} \\ \text{just D!}
$$

The only difference is the use of Ψ instead of Φ !

Mass Matrix Innovations Factorization

Recall: The Newton-Euler Factorization of the mass matrix

$$
\mathcal{M}(\theta) \stackrel{\triangle}{=} H\varphi M\varphi^*H^*
$$

- Square, symmetric and positive definite
- Size is the number of degrees of freedom
- The mass matrix is configuration dependent
- Dense matrix for serial chain systems
	- key reason for its perceived "complexity"
- Maps generalized velocities to system kinetic energy
- **Not** all of the operators in the Newton-Euler factorization of the mass matrix are **square**
	- Will encounter other factorizations with square factors
- Elements of Φ^*H^* are Kane's partial velocities

Innovations Factorization of the mass matrix

Claim:

Innovations Factorization

$$
\mathcal{M} = \big[\mathbf{I} + H\varphi\mathcal{K}\big]\mathcal{D}\big[\mathbf{I} + H\varphi\mathcal{K}\big]^*
$$

Derivation:

use identity $[I + H\phi\mathcal{K}]H\psi = H\phi$

$$
\mathcal{M} \stackrel{5.25}{=} H\varphi M\varphi^*H^* = H(\varphi\psi^{-1})\psi M\psi^*(\varphi\psi^{-1})^*H^*
$$

$$
\stackrel{7.11}{=} H[I + \phi \mathcal{K}H]\psi M \psi^* [I + \phi \mathcal{K}H]^* H^*
$$

= [**I** + Hφ \mathcal{K}](Hψ $M\Psi^*H^*$)[**I** + Hφ \mathcal{K}]^{*} $\stackrel{7.13}{=}$ [**I** + Hφ \mathcal{K}] \mathcal{D} [**I** + Hφ \mathcal{K}]^{*}

 $H\psi M\psi^*H^*=\mathcal{D}$ *use identity*

Properties of the Innovations Factorization of the mass matrix

- In the Newton-Euler factorization of the mass matrix, not all the factors were square
- However all the factors are square in the Innovations **Factorization**
- Moreover, the factors have block-triangular and blockdiagonal structure
- And as we will see, they are easy to invert!

Implications for forward dynamics

- Forward dynamics involves computing $\vec{\theta} = \mathcal{M}^{-1}(\mathcal{T} \mathcal{C})$ With the NE factorization our options were limited to $O(N^3)$ complexity
- The new factors however can be computed at $O(N^2)$ cost
- More these factors can be used to compute $\ddot{\theta} = \mathcal{M}^{-1}(\mathcal{T} \mathcal{C})$ at $O(N^2)$ cost as well.
- This is progress exploitation of the underlying structure has reduced computational costs – again!

Recall: Trace of the mass matrix

For 1 dof hinges

 $\text{Trace}\left\{H(k)\mathcal{R}(k)H^*(k)\right\} = H(k)\mathcal{R}(k)H^*(k)$

Determinant of the mass matrix

The determinant of a matrix is the product of the determinant of its square factors

General expression

$$
\det\{\mathfrak{M}\}=\prod_{k=1}^n\det\{\mathcal{D}(k)\}
$$

Application of mass matrix determinant: Fixman Potential

The Fixman potential is needed in molecular dynamics simulations for correcting statistical biases

$$
U_f \stackrel{\triangle}{=} \log \{ \det \{ \mathcal{M} \} \}
$$
\n
$$
\frac{\prod_{k=1}^{n} \det \{ \mathcal{D}(k) \}}{\log \{ \det \{ \mathcal{M} \} \}}
$$
\n
$$
= 2 \operatorname{Trace} \{ \mathcal{P}(i) \gamma(i) \widetilde{H}^*(i) \}
$$
\nForque from the *Available from standard ATBI computations*

Explicit simple expression via SOA for longstanding <i>intractable problem.

More operator decompositions

Decomposition of $\phi M\psi^*$

PROOF INOREM
$$
\psi M \psi^* = \mathcal{P} + \tilde{\psi} \mathcal{P} + \mathcal{P} \tilde{\psi}^*
$$

\n**Claim:**
\n $\phi M \psi^* = \mathcal{P} + \tilde{\phi} \mathcal{P} + \mathcal{P} \tilde{\psi}^*$
\n $\phi M \psi^* = \mathcal{P} + \tilde{\phi} \mathcal{P} + \mathcal{P} \tilde{\psi}^*$
\n $\phi M \psi^* = \mathcal{P} + \tilde{\phi} \mathcal{P} + \mathcal{P} \tilde{\psi}^*$
\n $\phi M \psi^* = \mathcal{P} + \tilde{\phi} \mathcal{P} + \mathcal{P} \tilde{\psi}^*$
\n $\phi M \psi^* = \mathcal{P} + \tilde{\phi} \mathcal{P} + \mathcal{P} \tilde{\psi}^*$
\n $\phi M \psi^* = \mathcal{P} + \tilde{\phi} \mathcal{P} + \mathcal{P} \tilde{\psi}^*$
\n $\phi M \psi^* = \mathcal{P} + \tilde{\phi} \mathcal{P} + \mathcal{P} \tilde{\psi}^*$
\n $\phi M \psi^* = \mathcal{P} + \tilde{\phi} \mathcal{P} + \mathcal{P} \tilde{\psi}^*$

Have
$$
M = P - \mathcal{E}_{\phi} P \mathcal{E}_{\psi}^*
$$

Pre and post multiply by φ , ψ to get

$$
\begin{aligned} \varphi \mathbf{M} \psi^* \stackrel{3.41,7.8}{=} \varphi \mathcal{P} \psi^* - \tilde{\varphi} \mathcal{P} \tilde{\psi}^* = (\tilde{\varphi} + \mathbf{I}) \mathcal{P} (\tilde{\psi}^* + \mathbf{I}) - \tilde{\varphi} \mathcal{P} \tilde{\psi}^* \\ = \tilde{\varphi} \mathcal{P} \tilde{\psi}^* + \mathcal{P} + \tilde{\varphi} \mathcal{P} + \mathcal{P} \tilde{\psi}^* - \tilde{\varphi} \mathcal{P} \tilde{\psi}^* = \mathcal{P} + \tilde{\varphi} \mathcal{P} + \mathcal{P} \tilde{\psi}^* \end{aligned}
$$

Jet Propulsion Laboratory California Institute of Technology **Another decomposition of** $\phi \mathbf{M} \phi^* = \mathcal{R} + \tilde{\phi} \mathcal{R} + \mathcal{R} \tilde{\phi}^*$ **Previously** *using CRBs* **Claim:** *using ATBIs*

$$
\phi M \phi^* = (\phi \psi^{-1}) \psi M \phi^* \stackrel{7.15}{=} (\phi \psi^{-1}) [\psi \mathcal{P} + \mathcal{P} \tilde{\phi}^*]
$$

$$
\stackrel{7.11}{=} \phi \mathcal{P} + [\mathbf{I} + \phi \mathcal{K} H] \mathcal{P} \tilde{\phi}^* = \mathcal{P} + \tilde{\phi} \mathcal{P} + \mathcal{P} \tilde{\phi}^* + \phi \mathcal{K} H \mathcal{P} \mathcal{E}_{\phi}^* \phi^*
$$

$$
\stackrel{6.13}{=} \mathcal{P} + \tilde{\phi} \mathcal{P} + \mathcal{P} \tilde{\phi}^* + \phi \mathcal{K} \mathcal{D} \mathcal{G}^* \mathcal{E}_{\phi}^* \phi^* \stackrel{6.36}{=} \mathcal{P} + \tilde{\phi} \mathcal{P} + \mathcal{P} \tilde{\phi}^* + \phi \mathcal{K} \mathcal{D} \mathcal{K}^* \phi^*
$$

CRB vs ATBI comparison

Claim:

Hint: use results on previous slide

Inversion of the Mass Matrix

Inverting the mass matrix $\mathcal{M}(\theta)$

- All the factors are square in the Innovations Factorization
- So want to look into inverting the mass matrix by inverting its factors
- D is block-diagonal, and easy to invert
- We will thus focus on inverting $[I + H\phi K]$

Claim:

 $[I + H\phi\mathcal{K}]^{-1} = [I - H\psi\mathcal{K}]$ *Lower triangular with identity along block-diagonal*

Derivation:

Inverse of $[I + H\phi\mathcal{K}]$

Have general matrix identity

$$
(\mathbf{I} + A\mathbf{B})^{-1} = \mathbf{I} - A(\mathbf{I} + B\mathbf{A})^{-1}\mathbf{B}
$$

\n
$$
[\mathbf{I} + H\boldsymbol{\phi}\mathbf{K}]^{-1} = \mathbf{I} - H[\mathbf{I} + \boldsymbol{\phi}\mathbf{K}H]^{-1}\boldsymbol{\phi}\mathbf{K} \stackrel{7.11}{=} \mathbf{I} - H(\boldsymbol{\phi}\boldsymbol{\psi}^{-1})^{-1}\boldsymbol{\phi}\mathbf{K}
$$

\n
$$
= \mathbf{I} - H\boldsymbol{\psi}\mathbf{K}
$$

\nusing $\varphi\boldsymbol{\psi}^{-1} = \mathbf{I} + \boldsymbol{\phi}\mathbf{K}H$

Mass matrix inverse

Claim:

$$
\mathcal{M}^{-1}=[\mathbf{I}-H\psi\mathcal{K}]^{*}\mathcal{D}^{-1}[\mathbf{I}-H\psi\mathcal{K}]
$$

Derivation:

$$
\mathcal{M}^{-1} \stackrel{7.14}{=} \{[\mathbf{I} + \mathbf{H}\boldsymbol{\phi}\mathcal{K}]\mathcal{D}[\mathbf{I} + \mathbf{H}\boldsymbol{\phi}\mathcal{K}]^*\}^{-1} = [\mathbf{I} + \mathbf{H}\boldsymbol{\phi}\mathcal{K}]^{-*}\mathcal{D}^{-1}[\mathbf{I} + \mathbf{H}\boldsymbol{\phi}\mathcal{K}]^{-1}
$$

$$
\stackrel{7.4}{=} [\mathbf{I} - \mathbf{H}\boldsymbol{\psi}\mathcal{K}]^*\mathcal{D}^{-1}[\mathbf{I} - \mathbf{H}\boldsymbol{\psi}\mathcal{K}]
$$

using
$$
\boxed{[\mathbf{I} + \mathbf{H}\boldsymbol{\phi}\mathcal{K}]^{-1} = [\mathbf{I} - \mathbf{H}\boldsymbol{\psi}\mathcal{K}]}
$$

Comments on mass matrix inverse

60

- Analytical, closed-form expression for the mass matrix using spatial operators
- The factors are square and invertible and have diagonal and triangular structure
- The expression is valid for any size system and branching structure

Progression with the Mass Matrix

Analytical Newton-Euler $M = H\phi M\phi^*H^*$ factorization of the mass matrix

 $\mathcal{M} = [I + H\phi\mathcal{K}]\mathcal{D}[I + H\phi\mathcal{K}]^*$

Analytical Innovations factorization of the mass matrix

$$
[I + H\phi \mathcal{K}]^{-1} = I - H\psi \mathcal{K}
$$

$$
\mathcal{M}^{-1} = \left[\mathbf{I} - H\psi\mathcal{K}\right]^* \mathcal{D}^{-1} \left[\mathbf{I} - H\psi\mathcal{K}\right]
$$

Analytical operator expression for the mass matrix inverse

How far have we come?

Spatial operators

- Velocity expression
- Jacobian
- Mass matrix NE factorization
- Lyapunov equation for CRBs
- Mass matrix decomposition
- Riccati equation for ATBI
- Several operator identities
- Mass matrix Innovations factorization
- Mass matrix determinant
- Mass matrix inverse and factorization

Have started to build up a vocabulary of spatial operators that can be used to express and manipulate the structure of dynamics quantities.

Now can see the rationale for the algebra part of SOA from the analytical transformations and simplifications possible using the operators.

Jet Propulsion Laboratory California Institute of Technology

- O(N) Gather and scatter recursions pattern
- O(N) Body velocities scatter recursion
- O(N) CRBs gather recursion
- $O(N^2)$ mass matrix computation
- O(N) NE scatter/gather inverse dynamics
- $O(N^2)$ inverse dynamics based mass matrix
- O(N) CRBs based inverse dynamics
- O(N) ATBI gather recursion
- $O(N^2)$ forward dynamics

Can derive such low-cost scatter/gather algorithms usually by examination of the spatial operator expressions.

Summary

- Introduced ATBI spatial operators
- Developed several operator identities
- Developed Innovations Factorization of the mass matrix
	- Has square and invertible factors
	- Can reduce forward dynamics costs
- Developed expression for inverse of factors
- Developed operator expression for the mass matrix inverse

SOA Foundations Track Topics (serial-chain rigid body systems)

- **1. Spatial (6D) notation** spatial velocities, forces, inertias; spatial cross-product, rigid body transformations & properties; parallel axis theorem
- **2. Single rigid body dynamics** equations of motion about arbitrary frame using spatial notation
- **3. Serial-chain kinematics** minimal coordinate formulation, hinges, velocity recursions, Jacobians; first spatial operators; O(N) scatter and gather recursions
- **4. Serial-chain dynamics** equations of motion using spatial operators; Newton–Euler mass matrix factorization; O(N) inverse dynamics; composite rigid body inertia; forward Lyapunov equation; mass matrix decomposition; mass matrix computation; alternative inverse dynamics
- **5. Articulated body inertia -** Concept and definition; Riccati equation; alternative force decompositions
- **6. Mass matrix factorization and inversion** spatial operator identities; Innovations factorization of the mass matrix; Inversion of the mass matrix
- **7. Recursive forward dynamics** O(N) recursive forward dynamics algorithm; including gravity and external forces; inter-body forces identity

SOA Generalization Track Topics

- **8. Graph theory based structure** BWA matrices, connection to multibody systems
- **9. Tree topology systems** generalization to tree topology rigid body systems, SKO/SPO operators, gather/scatter algorithms
- **10.Closed-chain dynamics (cut-joint)** holonomic and non-holonomic constraints, cut-joint method, operational space inertia, projected dynamics
- **11.Closed-chain dynamics (constraint embedding)** constraint embedding for graph transformation, minimal coordinate closed-chain dynamics
- **12.Flexible body dynamics** Extension to flexible bodies, modal representations, recursive flexible body dynamics

SOA Generalization Track Topics

- **1. Graph theory based structure** BWA matrices, SKO and SPO operators
- **2. Tree topology systems** generalization to tree topology rigid body systems, gather/scatter algorithms
- **3. Operational space dynamics** dynamics in task/constraint space, operational space inertia, decomposition and recursive computation
- **4. Closed-chain dynamics (cut-joint)** holonomic and non-holonomic constraints, cutjoint method, move and squeeze forces, projected dynamics
- **5. Graph transformations –** Multibody topology transformation and decomposition, aggregation
- **6. Closed-chain dynamics (constraint embedding)** constraint embedding for graph transformation, minimal coordinate closed-chain dynamics
- **7. Flexible body dynamics** Extension to flexible bodies, modal representations, recursive flexible body dynamics
- **8. Numerical methods and integrators** (Radu Serban) ODE and DAE integration for multibody dynamics

