

Dynamics and Real-Time Simulation (DARTS) Laboratory

Spatial Operator Algebra (SOA)

1. Articulated Body Inertias

Abhinandan Jain

June 19, 2024

<https://dartslab.jpl.nasa.gov/>

Jet Propulsion Laboratory California Institute of Technology

SOA Foundations Track Topics (serial-chain rigid body systems)

- **1. Spatial (6D) notation** spatial velocities, forces, inertias; spatial cross-product, rigid body transformations & properties; parallel axis theorem
- **2. Single rigid body dynamics** equations of motion about arbitrary frame using spatial notation
- **3. Serial-chain kinematics** minimal coordinate formulation, hinges, velocity recursions, Jacobians; first spatial operators; O(N) scatter and gather recursions
- **4. Serial-chain dynamics** equations of motion using spatial operators; Newton–Euler mass matrix factorization; O(N) inverse dynamics; composite rigid body inertia; forward Lyapunov equation; mass matrix decomposition; mass matrix computation; alternative inverse dynamics
- **5. Articulated body inertia -** Concept and definition; Riccati equation; alternative force decompositions
- **6. Mass matrix factorization and inversion** spatial operator identities; Innovations factorization of the mass matrix; Inversion of the mass matrix
- **7. Recursive forward dynamics** O(N) recursive forward dynamics algorithm; including gravity and external forces; inter-body forces identity

Recap

- Developed Newton-Euler factorization of the mass matrix
- Introduced CRB inertias for the decomposition of the mass matrix and its $O(N^2)$ computation
- Developed operator form of system equations of motion
- Developed O(N) Newton-Euler inverse dynamics algorithm
- Explored inverse dynamics based computation of mass matrix, and CRB based inverse dynamics and force decompositions

Background

- We now switch to the **forward dynamics** problem which involves the mass matrix inverse
- While we can directly go the spatial operator route, we will take a step back to work at the component level to build up some physical intuition
- This route will involve a new quantity referred to as the *articulated body inertia*
	- This and related quantities are the focus of this session

Inter-body force decompositions

Inter-body spatial force decomposition models

Terminal and **Composite Rigid Body** models

Inter-body spatial force decompositions

- Ignore Coriolis terms for the moment
- Force decompositions consist of inertia + residual terms
- From the equations of motion we had

$$
f(k) = M(k)\alpha(k) + \varphi(k, k - 1)f(k - 1)
$$
\n
$$
\uparrow
$$
\n
$$
\downarrow
$$

$$
f(k) = \mathcal{R}(k)\alpha(k) + y(k)
$$

depends on **outboard**
boldies only
generalized accels

- The more complex inertia term simplifies the residual force term in the force decompositions
- We will see more such decompositions later

Why force decompositions?

- Force decompositions provide an opportunity to view the dynamics in new ways
	- View the general multibody system as a deviation from a reference model
- Composite body inertias provide an alternative way to describe the accels/force relationship and additional insight
- The decompositions also provide a pathway to computational algorithms, eg. the CRBs based inverse dynamics algorithms
- The articulated body force decomposition we pursue here will provide the basis for the O(N) recursive forward dynamics algorithm

Single body equations of motion decomposition

Terminal body model

• Residual term is zero when the kth body is a terminal body. We then have the simpler relationship

 $f(k) = M(k)\alpha(k)$

• In reality, there are outboard bodies, and the residual term accounts for the interaction with all the outboard bodies

$$
\mathfrak{f}(k)=M(k)\alpha(k)+\boxed{\varphi(k,k-1)\mathfrak{f}(k-1)}
$$

CRB decomposition

Composite body model

- An improvement over terminal body model in not ignoring outboard bodies
- Residual term is zero if outboard generalized accels are zero, i.e. if outboard bodies are rigid

 $f(k) = \mathcal{R}(k)\alpha(k)$

- The residual term accounts for the non-zero generalized accels of the outboard bodies
	- The gen accels of the inboard bodies does not matter

$$
\mathfrak{f}(k)=\mathfrak{R}(k)\alpha(k)+\boxed{y(k)}
$$

Inter-body force decomposition models

Will now develop this model …

Floppy Articulated body model

Articulated Body 'floppy' model

Lets first focus on the "floppy" case, i.e. where the outboard hinges are free with zero generalized forces. Later will allow non-zero generalized forces.

Question

What is the effective inertia, i.e. the force/acceleration relationship at the (k+1)th body when the outboard bodies are floppy, i.e. the outboard body generalized forces are all 0?

Tip body's articulated body inertia

• Clearly know the answer for the tip body

$$
\mathfrak{f}(1)=\mathsf{M}(1)\alpha(1)
$$

articulated body inertia (ATBI)

$$
\mathcal{P}(1) = M(1)
$$

- Will use induction based argument to extend to other bodies
- So let us assume we have established the ATBI relationship for the kth body

$$
\mathfrak{f}(k)=\mathfrak{P}(k)\alpha(k)
$$

Induction based derivation - start

Induction based derivation - end

Conditions to be met

$$
f(k) = \mathcal{P}(k)\alpha(k)
$$

$$
\mathcal{T}(j) = H(j)f(j) = 0 \quad \forall \ j < k+1
$$

Condition to be met for kth hinge

• Hinge k (connecting bodies k and (k+1)) is free, i.e. its generalized force is 0, i.e.

$$
0 \stackrel{6.7}{=} {\cal T}(k) \stackrel{6.7}{=} H(k)f(k) = H(k){\cal P}(k)\alpha(k)
$$

Acceleration relationships

Know $\alpha(k+1)$, need to find $f(k+1)$ & $\mathcal{P}(k+1)$

$$
\text{Have} \qquad \alpha^+(k) = \varphi^*(k+1, k)\alpha(k+1)
$$

$$
\quad \text{and} \quad \quad \alpha(k) = \alpha^+(k) + H^*(k) \ddot{\theta}(k)
$$

$$
\begin{array}{rcl}\n\mathbf{0} & \stackrel{6.7}{=} & \mathcal{T}(k) & \stackrel{6.7}{=} & \mathcal{H}(k)\mathfrak{f}(k) = \mathcal{H}(k)\mathcal{P}(k)\alpha(k) \\
& \stackrel{6.10}{=} & \mathcal{H}(k)\mathcal{P}(k)\alpha^+(k) + \mathcal{H}(k)\mathcal{P}(k)\mathcal{H}^*(k)\ddot{\mathbf{\theta}}(k)\n\end{array}
$$

Solving for generalized accel at the hinge

$$
0 \stackrel{6.7}{=} \mathcal{T}(k) \stackrel{6.7}{=} H(k)f(k) = H(k)\mathcal{P}(k)\alpha(k)
$$

$$
\stackrel{6.10}{=} H(k)\mathcal{P}(k)\alpha^{+}(k) + H(k)\mathcal{P}(k)H^{*}(k)\ddot{\theta}(k)
$$

$$
\stackrel{6.11}{\mathcal{O}(k)} \stackrel{6.11}{=} -\mathcal{D}^{-1}(k)H(k)\mathcal{P}(k)\alpha^{+}(k) = -\mathcal{G}^{*}(k)\alpha^{+}(k)
$$

where

$$
\mathcal{D}(k) \stackrel{\triangle}{=} H(k)\mathcal{P}(k)H^*(k)
$$

$$
\mathcal{G}(k) \ \stackrel{\triangle}{=} \ \mathcal{P}(k) H^*(k) \mathcal{D}^{-1}(k)
$$

Identity

From the definitions

$$
\mathcal{D}(k) \stackrel{\triangle}{=} H(k)\mathcal{P}(k)H^*(k)
$$

$$
\mathcal{G}(k) \stackrel{\triangle}{=} \mathcal{P}(k)H^*(k)\mathcal{D}^{-1}(k)
$$

It follows that

$$
\boxed{H(k)\mathcal{G}(k)=I}
$$

$$
\ddot{\theta}(k) \stackrel{6.11}{=} -D^{-1}(k)H(k)\mathcal{P}(k)\alpha^{+}(k) = -\mathcal{G}^{*}(k)\alpha^{+}(k)
$$

$$
\text{With} \qquad \alpha(k) \stackrel{5.21,6.9}{=} \alpha^+(k) + H^*(k) \mathbf{\ddot{\theta}}(k)
$$

have

$$
\alpha(k)\stackrel{6.10,6.12}{=} [I-H^*(k)\mathcal{G}^*(k)]\alpha^+(k) = \overline{\tau^*(k)\alpha^+(k)}
$$

where

$$
\tau(k)\;\stackrel{\triangle}{=}\;g(k)H(k)\quad \ \overline{\tau}(k)\;\stackrel{\triangle}{=}\;I-\tau(k)=I-g(k)H(k)
$$

$\tau(k)$ and $\bar{\tau}(k)$ are projections

Claim: $\tau(k)$ is a projection

Proof:

 $H(k)G(k) = I$ **Have** and $\tau(k) \stackrel{\triangle}{=} \mathcal{G}(k)H(k)$ $\tau(k) \cdot \tau(k) \stackrel{6.16}{=} \mathcal{G}(k)H(k)\mathcal{G}(k)H(k) \stackrel{6.14}{=} \mathcal{G}(k)H(k) = \tau(k)$ Since $\overline{\tau}(k) \stackrel{\triangle}{=} I - \tau(k)$ it is a projection too.

$\tau(k)$ and $\bar{\tau}(k)$ projection properties

Identities:

$$
\tau(k)\mathcal{G}(k)=\mathcal{G}(k)
$$

$$
\boxed{\overline{\tau}^*(k)H^*(k)=0}
$$

More $\tau(k)$ projection properties

Claim:
$$
\tau(k)\mathcal{P}(k) = \mathcal{P}(k)\tau^*(k) = \tau(k)\mathcal{P}(k)\tau^*(k)
$$

$$
\mathcal{P}(k)\overline{\tau}^*(k) = \overline{\tau}(k)\mathcal{P}(k) = \overline{\tau}(k)\mathcal{P}(k)\overline{\tau}^*(k) \left| \frac{\text{SHOW!}}{\text{SHOW!}}
$$

Proof: (of first identity)

$$
\text{Using }\quad \tau(k)\ \stackrel{\triangle}{=}\ \mathcal{G}(k)H(k)\quad \text{&}\quad \mathcal{G}(k)\ \stackrel{\triangle}{=}\ \mathcal{P}(k)H^*(k)\mathcal{D}^{-1}(k)
$$

we have

$$
\tau(k) \mathcal{P}(k) \stackrel{6.13,6.16}{=} \mathcal{P}(k) H^*(k) \mathcal{D}^{-1}(k) H(k) \mathcal{P}(k) \stackrel{6.13,6.16}{=} \mathcal{P}(k) \tau^*(k)
$$

Also
$$
\tau(k)\mathcal{P}(k) = [\tau(k)]^2 \mathcal{P}(k) \stackrel{6.27}{=} \tau(k)\mathcal{P}(k)\tau^*(k)
$$

Projection of $\alpha^+({\bf k})$

Crossing the hinge with

Jet Propulsion Laboratory
California Institute of Technology **NASA**

$$
\mathfrak{P}^+(k)=\overline{\tau}(k)\mathfrak{P}(k)=\mathfrak{P}(k)\overline{\tau}^*(k)=\overline{\tau}(k)\mathfrak{P}(k)\overline{\tau}^*(k)
$$

$$
\boxed{\mathcal{P}^+(k) \stackrel{\triangle}{=} \mathcal{P}(k)\overline{\tau}^*(k)}
$$

Have:

$$
\mathcal{P}(k)\overline{\tau}^*(k) = \overline{\tau}(k)\mathcal{P}(k) = \overline{\tau}(k)\mathcal{P}(k)\overline{\tau}^*(k)
$$

ATBI Expression $P(k + 1)$

Jet Propulsion Laboratory
California Institute of Technology

Claim: ATBI for (k+1) body

$$
\mathcal{P}(k+1) \stackrel{\triangle}{=} \varphi(k+1,k)\mathcal{P}^+(k)\varphi^*(k+1,k) + M(k+1)
$$

Proof:

$$
\text{Using }\quad \alpha^+(k)=\varphi^*(k+1,k)\alpha(k+1)\quad \text{ and }\quad \mathfrak{f}(k)=\mathfrak{P}^+(k)\alpha^+(k)
$$

$$
f(k+1) \stackrel{5.21}{=} \Phi(k+1,k)f(k) + M(k+1)\alpha(k+1)
$$

\n
$$
\stackrel{6.25}{=} \Phi(k+1,k)\mathcal{P}^+(k)\alpha^+(k) + M(k+1)\alpha(k+1)
$$

\n
$$
\stackrel{6.9}{=} \frac{[\Phi(k+1,k)\mathcal{P}^+(k)\Phi^*(k+1,k) + M(k+1)]}{\uparrow} \alpha(k+1)
$$

\n
$$
f(k+1) = \mathcal{P}(k+1)\alpha(k+1)
$$

Floppy decompositions summary

Defining $\psi(k+1, k)$

Define the *articulated body transformation matrix*

$$
\psi(k+1,k)\ \stackrel{\triangle}{=}\ \varphi(k+1,k)\overline{\tau}(k)
$$

- $\psi(k+1, k)$ is a 6x6 matrix like $\phi(k+1, k)$
- However it is typically singular
- It depends on hinge properties
- Unlike $\varphi(k+1, k)$ which propagates across rigid bodies, $\psi(k+1, k)$ propagates across articulated bodies

ATBI Riccati Equation

Claim:

Riccati equation

$$
\mathcal{P}(k+1) \stackrel{6.32}{=} \psi(k+1,k)\mathcal{P}(k)\psi^*(k+1,k) + M(k+1)
$$

Proof:

Have

$$
\mathcal{P}(k+1) \stackrel{\triangle}{=} \varphi(k+1,k)\mathcal{P}^+(k)\varphi^*(k+1,k) + M(k+1)
$$

The result follows from substituting in

$$
\mathcal{P}^+(k) \stackrel{\triangle}{=} \mathcal{P}(k)\overline{\tau}^*(k)
$$

and
$$
\psi(k+1,k) \stackrel{\triangle}{=} \varphi(k+1,k)\overline{\tau}(k)
$$

Riccati vs Lyapunov Equations

Lyapunov equation for CRBs

$$
\mathcal{R}(k) = \varphi(k, k-1)\mathcal{R}(k-1)\varphi^*(k, k-1) + M(k)
$$

O(N) recursive gather algorithm for ATBIs

This is a tip to base gather recursion

 $\begin{cases}\n\mathbb{P}^+(0) = 0 \\
\text{for } k = 1 \cdots n\n\end{cases}$ for k $1 \cdots n$
 $\mathcal{P}(k) = \phi(k, k - 1)\mathcal{P}^{+}(k - 1)\phi^{*}(k, k - 1) + M(k)$
 $\mathcal{D}(k) = H(k)\mathcal{P}(k)H^{*}(k)$
 $\mathcal{G}(k) = \mathcal{P}(k)H^{*}(k)\mathcal{D}^{-1}(k)$
 $\overline{\tau}(k) = I - \mathcal{G}(k)H(k)$
 $\mathcal{P}^{+}(k) = \overline{\tau}(k)\mathcal{P}(k)$

end loop

Properties of the Articulated Body Inertia

The articulated body inertia P(k) acts like an inertia but is not a spatial inertia!

• It is a dense 6x6, symmetric, positive definite matrix

Comparison with $\mathcal{P}^+(k)$

$$
\boxed{\mathcal{P}^+(k) \;\; \stackrel{\triangle}{=}\; \mathcal{P}(k)\overline{\tau}^*(k) }
$$

- $\mathcal{P}^+(k)$ is symmetric, but singular and only positive semi-definite
	- Moreover

$$
\mathcal{P}(\mathsf{k}) \geqslant \mathcal{P}^+(\mathsf{k})
$$

Also

 $\mathcal{R}(k) \geqslant \mathcal{P}(k) \geqslant M(k)$

composite body inertia

ATBI inertia for hinge special cases

Special case: Locked hinge (0 dof)

Parent/child bodies rigidly coupled (no articulation)

- $D(k) = 0$, $G(k) = 0$
- $\tau(k) = 0, \quad \overline{\tau}(k) = 1$
- $\mathcal{P}(k) = \mathcal{P}^+(k)$

Special case: Uncoupled hinge (6 dof)

Parent/child bodies uncoupled (no constraints)

- $D(k) = P(k) = G(k)$
- $\tau(k) = 1, \quad \overline{\tau}(k) = 0$
- $\mathcal{P}^+(k) = 0$

Non-Floppy Articulated body model

Allowing non-zero generalized forces

• For the floppy model, we assumed that the outboard generalized forces were zero and had

 $f(k) = \mathcal{P}(k)\alpha(k)$

where $\mathcal{T}(i) = H(i)f(i) = 0 \quad \forall \; i < k$

- What happens when the outboard generalized forces are non-zero?
- Look for decomposition of the form:

$$
\mathfrak{f}(k+1) = \mathfrak{P}(k+1)\alpha(k+1) + \boxed{\mathfrak{z}(k+1)}
$$

Tip body's ATBI decomposition

• Clearly know the answer for the tip body

$$
\mathfrak{f}(1)~=~\mathcal{P}(1)\alpha(1)
$$

$$
\mathfrak{z}(1) = 0
$$

- Will use induction based argument to extend to other bodies
- So let us assume we have established the decomposition for the kth body

$$
\mathfrak{f}(k)=\mathcal{P}(k)\alpha(k)+\mathfrak{z}(k)
$$

Induction based derivation - start

Induction based derivation - end

Moving to the inboard side of the hinge

Claim: $f(k) = P^{+}(k)\alpha^{+}(k) + \beta^{+}(k)$ where $3^+(k) \stackrel{\triangle}{=} \overline{\tau}(k)3(k) + 9(k)\mathcal{T}(k)$

Proof:

$$
f(k) \stackrel{6.16}{=} \overline{\tau}(k)f(k) + \tau(k)f(k) \stackrel{6.16.6.6}{=} g(k)H(k)f(k) + \overline{\tau}(k)[\mathcal{P}(k)\alpha(k) + \mathfrak{z}(k)]
$$

\n
$$
\stackrel{5.21}{=} g(k)\mathcal{T}(k) + \overline{\tau}(k)\mathcal{P}(k)\alpha(k) + \overline{\tau}(k)\mathfrak{z}(k)
$$

\n
$$
\stackrel{6.27.6.10}{=} g(k)\mathcal{T}(k) + \mathcal{P}^+(k)[\alpha^+(k) + H^*(k)\ddot{\theta}(k)] + \overline{\tau}(k)\mathfrak{z}(k)
$$

\n
$$
\stackrel{6.28}{=} g(k)\mathcal{T}(k) + \frac{p^+(k)\alpha^+(k)}{[1 + \overline{\tau}(k)\mathfrak{z}(k)]}
$$

Innovation term $\varepsilon(k)$

Have

$3^+(k) \stackrel{\triangle}{=} \overline{\tau}(k)3(k) + 9(k)\mathcal{T}(k)$ **Define** $\epsilon(k) \triangleq \mathcal{T}(k) - H(k)\mathfrak{z}(k)$ $v(k) \stackrel{\triangle}{=} \mathcal{D}^{-1}(k)\epsilon(k)$ *innovation term*

$$
\mathfrak{z}^+(k)=\mathfrak{z}(k)+\mathfrak{G}(k)\varepsilon(k)
$$

Jet Propulsion Laboratory California Institute of Technology

re-expression

Moving to (k+1) body frame

Claim:
$$
f(k+1) = \mathcal{P}(k+1)\alpha(k+1) + \beta(k+1)
$$
 where

$$
\mathfrak{z}(k+1) \ \stackrel{\triangle}{=} \ \varphi(k+1) \mathfrak{z}^+(k) \stackrel{6.36,6.32}{=} \psi(k+1,k) \mathfrak{z}(k) + \mathfrak{K}(k+1,k) \mathfrak{T}(k)
$$

 $\mathcal{K}(k+1,k) \stackrel{\triangle}{=} \phi(k+1,k) \mathcal{G}(k)$ with

Proof:

$$
f(k+1) \stackrel{5.21}{=} \phi(k+1,k)f(k) + M(k+1)\alpha(k+1)
$$

\n
$$
\stackrel{6.35}{=} \phi(k+1,k)[\mathcal{P}^+(k)\alpha^+(k) + \mathfrak{z}^+(k)] + M(k+1)\alpha(k+1)
$$

\n
$$
\stackrel{6.9}{=} \phi(k+1,k)\mathcal{P}^+(k)\phi^*(k+1,k)\alpha(k+1)] + \phi(k+1,k)\mathfrak{z}^+(k)
$$

\n
$$
+ M(k+1)\alpha(k+1)
$$

\n
$$
\stackrel{6.31}{=} \mathcal{P}(k+1)\stackrel{\bullet}{\alpha}(k+1) + \phi(k+1,k)\mathfrak{z}^+(k)
$$

ATBI decomposition summary

Tip-to-base gather recursion

$$
\begin{cases}\n\mathbf{a} + (0) = 0 \\
\text{for } k = 1 \cdots n \\
\mathbf{a}(k) = \phi(k, k - 1)\mathbf{a}^+(k - 1) \\
\mathbf{b}(k) = \mathcal{T}(k) - H(k)\mathbf{a}(k) \\
\mathbf{a}^+(k) = \mathbf{a}(k) + \mathcal{G}(k)\mathbf{b}(k) \\
\text{end loop}\n\end{cases}
$$

This, together with earlier recursion for the ATBIs, is half the story for the O(N) forward dynamics algorithm!

Jet Propulsion Laboratory
California Institute of Technology

Generalized accelerations

For the floppy case we had

$$
\boldsymbol{\ddot{\theta}}(k)~=-g^*(k)\alpha^+(k)
$$

Claim:

$$
\ddot{\theta}(k) \stackrel{6.11}{=} \underline{\nu(k)} - g^*(k)\alpha^+(k)
$$

non-floppiness compensating term

Proof:

$$
\begin{aligned}\n\tilde{\theta}(k) & \stackrel{6.43}{=} \mathcal{D}^{-1}(k) \{ \epsilon(k) - H(k) \mathcal{P}(k) \phi^*(k+1, k) \alpha(k+1) \} \\
& \stackrel{6.44, 6.13}{=} \nu(k) - \mathcal{G}^*(k) \phi^*(k+1, k) \alpha(k+1) \\
& \stackrel{6.39}{=} \nu(k) - \mathcal{K}^*(k+1, k) \alpha(k+1)\n\end{aligned}
$$

Body spatial accelerations

Proof:

$$
\begin{array}{ll} \alpha(k) & \stackrel{5.21}{=} \Phi^*(k+1,k) \alpha(k+1) + H^*(k) \ddot{\theta}(k) \\ & \stackrel{6.45}{=} \Phi^*(k+1,k) \alpha(k+1) + H^*(k) \big[\nu(k) - \mathcal{K}^*(k+1,k) \alpha(k+1) \big] \\ & \stackrel{6.32,6.39}{=} \Psi^*(k+1,k) \alpha(k+1) + H^*(k) \nu(k) \end{array}
$$

ATBI residual for hinge special cases

Special case: Locked hinge (0 dof)

Parent/child bodies rigidly coupled (no articulation)

• $D(k) = 0$, $G(k) = 0$

$$
\bullet \quad \tau(k) = 0, \qquad \overline{\tau}(k) = I
$$

•
$$
\mathcal{P}(k) = \mathcal{P}^+(k)
$$

\n- $$
\ddot{\theta}(k) = \gamma(k) = \varepsilon(k) = 0
$$
\n- $\alpha^+(k) = \alpha(k)$
\n- $\delta^+(k) = \delta(k)$
\n

Articulated body model

Jet Propulsion Laborator

Articulated body model

- An improvement over terminal body model in not ignoring outboard bodies
- Residual term is zero if outboard generalized forces are zero, i.e. if outboard bodies are floppy

 $f(k) = \mathcal{P}(k)\alpha(k)$

- The residual term accounts for the non-zero generalized forces of the outboard bodies
	- The gen forces of the inboard bodies does not matter

$$
f(k) = \mathcal{P}(k)\alpha(k) + \boxed{\mathfrak{z}(k)}
$$

Inter-body spatial force decompositions

- Force decompositions consist of inertia + residual terms
- From the equations of motion we had

$$
f(k) = M(k)\alpha(k) + \phi(k, k - 1)f(k - 1)
$$

depends on **kth**
body
depends on **all** bodies

• Using CRBs we have

$$
f(k) = \mathcal{R}(k)\alpha(k) + y(k)
$$

depends on **outboard**
boldies only
generalized accels

• Using ATBI we have

$$
\mathfrak{f}(k) = \mathfrak{P}(k)\alpha(k) + \mathfrak{z}(k)
$$

depends on outboard bodies only

depends on outboard generalized forces

Connections to Estimation Theory

The optimal estimation problem

Consider the noisy, discrete, time-domain dynamical system

Estimation problems

62

- **Optimal filtering:** At a given time k, and the **past** observations T(1) … T(k), determine the best estimate z(k) for the state x(k). This is a *causal* problem.
- **Optimal smoothing:** Given **all** observations past and future, T(1) … T(n), determine the best estimate f(k) for x(k). This is an *anti-causal* problem. Jet Propulsion L

Role of \mathcal{E}_{Φ} and Φ

$$
\begin{aligned} x(k) &= \varphi(k,k-1)x(k-1) + w(k) \\ \mathfrak{T}(k) &= H(k)x(k) \end{aligned}
$$

$$
x = \mathcal{E}_{\Phi} x + w
$$

Re-expression of the time domain relationship

$$
x = \Phi w
$$

Maping from the full input vector to the full state vector

$$
T = Hx
$$

Maping from the full state vector *to the full output vector*

Optimal Kalman filter

The optimal filtering process involves the following steps at each time instant:

- 1. Use a **Riccati equation** to propagate the estimation error covariance and define gains to use
- 2. Use the previous state estimate to **predict** the state at the current time
- 3. Extract **new information** (i.e. the innovations term) from the current observation
- 4. Use the innovations term to **update** the predict to compute the filter state estimate

Correspondence to dynamics

We will use same notation to show correspondence

- Estimation error covariance $P(k)$
- Riccati equation

Riccati equation

$$
\mathcal{P}(k+1) \stackrel{6.32}{=} \psi(k+1,k)\mathcal{P}(k)\psi^*(k+1,k) + M(k+1)
$$

• Predict step

Optimal Kalman smoother

- Based on Bryson-Frazier method
- Uses a recursion going backwards in time
- Uses the stored optimal filter estimates
- Update the filter estimates using the backward recursion co-state to compute the smoothed state estimate

$$
\textit{co-state} \hspace{0.5cm} \alpha(k) \stackrel{2,6.39}{=} \psi^*(k+1,k) \alpha(k+1) + H^*(k) \nu(k)
$$

optimal smoothed estimate

$$
\mathfrak{f}(k)=\mathfrak{z}(k)+\mathfrak{P}(k)\alpha(k)=\mathfrak{z}^+(k)+\mathfrak{P}^+(k)\alpha^+(k)
$$

Key covariance quantities

state covariance
$$
\text{cov}[x] = \phi M \phi^*
$$
\noutput covariance
$$
\text{cov}[T] = M
$$
\nfilter estimate covariance
$$
\text{cov}[z] = \phi K \mathcal{D}^{-1} K^* \phi^* = \tilde{\phi} \tau P \tau^* \tilde{\phi}^*
$$
\n
$$
= \phi M \phi^* - [P + \tilde{\phi} P + P \tilde{\phi}^*]
$$
\n
$$
= (R - P) + \tilde{\phi} (R - P) + (R - P) \tilde{\phi}^*
$$
\ninnovations covariance
$$
\text{cov}[e] = D
$$
\ninnovations alt covariance
$$
\text{cov}[v] = \mathcal{D}^{-1}
$$
\nfilter error covariance
$$
\text{cov}[e_z] = \psi M \psi^* = \overline{P} + \tilde{\psi} P + P \tilde{\psi}^*
$$

Summary

- Developed articulated body model for the decomposition of forces
	- Defined articulated body inertias and related quantities
	- Derived expression for residual forces
	- Developed O(N) gather algorithm for computing these quantities
- Described parallels with estimation theory

SOA Foundations Track Topics (serial-chain rigid body systems)

- **1. Spatial (6D) notation** spatial velocities, forces, inertias; spatial cross-product, rigid body transformations & properties; parallel axis theorem
- **2. Single rigid body dynamics** equations of motion about arbitrary frame using spatial notation
- **3. Serial-chain kinematics** minimal coordinate formulation, hinges, velocity recursions, Jacobians; first spatial operators; O(N) scatter and gather recursions
- **4. Serial-chain dynamics** equations of motion using spatial operators; Newton–Euler mass matrix factorization; O(N) inverse dynamics; composite rigid body inertia; forward Lyapunov equation; mass matrix decomposition; mass matrix computation; alternative inverse dynamics
- **5. Articulated body inertia -** Concept and definition; Riccati equation; alternative force decompositions
- **6. Mass matrix factorization and inversion** spatial operator identities; Innovations factorization of the mass matrix; Inversion of the mass matrix
- **7. Recursive forward dynamics** O(N) recursive forward dynamics algorithm; including gravity and external forces; inter-body forces identity

