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SOA Foundations Track Topics 
(serial-chain rigid body systems)

1. Spatial (6D) notation – spatial velocities, forces, inertias; spatial cross-product, rigid body 

transformations & properties; parallel axis theorem

2. Single rigid body dynamics – equations of motion about arbitrary frame using spatial 

notation

3. Serial-chain kinematics – minimal coordinate formulation, hinges, velocity recursions, 

Jacobians; first spatial operators; O(N) scatter and gather recursions

4. Serial-chain dynamics – equations of motion using spatial operators; Newton–Euler mass 

matrix factorization; O(N) inverse dynamics; composite rigid body inertia; forward Lyapunov

equation; mass matrix decomposition; mass matrix computation; alternative inverse dynamics

5. Articulated body inertia - Concept and definition; Riccati equation; alternative force 

decompositions

6. Mass matrix factorization and inversion – spatial operator identities; Innovations 

factorization of the mass matrix; Inversion of the mass matrix

7. Recursive forward dynamics – O(N) recursive forward dynamics algorithm; including 

gravity and external forces; inter-body forces identity

See https://dartslab.jpl.nasa.gov/References/index.php for publications and 

references on the SOA methodology.

https://dartslab.jpl.nasa.gov/References/index.php
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Recap
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Recap

• Discussed minimal coordinate kinematics model of a 

rigid body serial-chain

• Introduced stacked notation

• Introduced the     ,     and     spatial operators

• Derived recursive kinematics algorithms for poses and 

body spatial velocities

• Discussed duality between operator expressions and 

O(N) recursive computations:

• :  base-to-tip O(N) scatter recursion

• :  tip-to-base O(N) gather recursion

• Introduced Jacobian and its operator expression
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Serial-Chain Rigid Body Dynamics
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Outline

• System mass matrix 

• Newton Euler Factorization

• Composite body inertias

• Computing the mass matrix

• Serial chain equations of motion

• Operator expressions

• External forces, gravity

• Inverse dynamics

• O(N) Recursive Newton-Euler

• Using composite body inertias
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System Mass Matrix
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System kinetic energy

System kinetic energy is the sum of the body kinetic energies 

where
block diagonal 

spatial inertia 

operator
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System mass matrix

Using

The kinetic energy can be expressed as

Newton-Euler factorization of 

the mass matrix

mass matrix

more general form
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Properties of the mass matrix

• Square, symmetric and positive definite

• Size is the number of velocity degrees of freedom 

• The mass matrix is configuration dependent

• Dense matrix for serial chain systems
• key reason for its perceived “complexity”

• Maps generalized velocities to system kinetic energy

• Not all of the operators in the Newton-Euler factorization of the mass matrix 

are square
• Will encounter other factorizations with square factors

• Elements of             are Kane’s partial velocities

Later - The NE operator factorization holds for any tree/branched system.
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Computing the mass matrix

• Computing the mass matrix is the major goal of conventional 

dynamics formulations 

• The Newton-Euler factorization can be used to compute the 

mass matrix
• Compute each of the component operators, and then take their product 

via the factored expression

• Given the size of the operators, this process is of            computational 

complexity

• Can we do better?
• Yes, by making use of composite rigid body inertias
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Composite Rigid Body Inertias
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Composite Rigid Body (CRB) Inertias

Composite body inertias (CRB) combine the spatial inertias 

of connected bodies as if the connecting hinges were frozen 

CRBs
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CRBs gather recursive algorithm

CRB relationship for connected bodies

O(N) recursive, tip-to-base gather algorithm for CRBs

parallel axis transformation of 

outboard CRB 
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CRBs gather algorithm flow

Structure of the O(N) tip-to-base gather algorithm for 

the CRBs
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Properties of CRB

• CRBs are proper spatial inertias

• is configuration dependent, but depends only on the 

outboard coordinates and does not depend on inboard body 

coordinates

composite 

rotational inertia

composite CM 

location

composite mass
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Walker & Orin CRB algorithm

Equivalent Walker/Orin CRB algorithm at the 

component level

Spatial notation version

Great illustration of 

the compactness of 

spatial notation 

expressions
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System spatial inertia and momentum
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System center of mass

With pick-off operator

system spatial inertia is the base body’s CRB

Its first moment specifies the instantaneous 

location of the system center of mass.
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System spatial momentum

The system spatial momentum is given by

For floating base systems, the spatial 

momentum takes the form

SHOW!

spatial momentum 

if all hinges are 

locked

spatial momentum 

contribution from 

internal motion

SHOW!
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System CM spatial velocity

For floating base systems, the CM spatial velocity is

The system CM spatial velocity (inertially referenced 

to the body frame, i.e.                                   ) is

spatial velocity 

of the base 

body

CM spatial velocity 

contribution from 

internal motion

system CM location
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Nullifying spatial momentum 

• When simulating dynamics of  floating-base systems (eg. 

spacecraft or molecules) conserved quantities such as the 

spatial momentum can build up numerical drift

• Resetting the spatial momentum is simple

Just measure the system body frame referenced CM spatial velocity and 

subtract it from the base body’s spatial velocity to nullify spatial momentum 

and zero out the CM velocity.
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Decomposition of    
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Forward Lyapunov Equation for CRBs

Define CRB spatial operator

CRB recursion

Can re-express as CRB “forward Lyapunov

equation” using spatial operators
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Why Lyapunov?

Consider the noisy, discrete, time-domain dynamical system

The covariance of the x(k) state is R(k) which is the solution to the 

discrete Lyapunov equation

white noise with 

covariance M(k)

state

timeoutput

state propagation matrix

This is precisely the CRBs recursion! Hence Lyapunov.
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Operator decomposition of 

Claim:

Derivation:

and thus pre & post multiplying
use identity

Later – This decomposition holds for any tree/branched system.
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Decomposition structure of 

The decomposition consists of 3 disjoint terms – a diagonal, and strictly 

upper/lower triangular parts

diagonal lower 

triangular

upper 

triangular
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Structure of  the Mass Matrix using CRBs
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Decomposition of the mass matrix

Can use the CRBs to develop a decomposition of the mass 

matrix into disjoint components

diagonal strictly 

lower 

triangular

strictly 

upper 

triangular
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Observations on mass matrix structure

Observations:

• Components are disjointed

• The values are full determined by the diagonal CRBs

• The sparsity structure of the mass matrix is determined by     !  

• Dense for serial chains – but not so for trees.

• The operators help reveal the underlying structure – not apparent 

through other methods

diagonal strictly 

lower 

triangular

strictly 

upper 

triangular

Later – This mass matrix decomposition holds for any tree/branched system.
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Mass matrix as a covariance

Consider the noisy, discrete, time-domain dynamical system

The covariance of the x(k) state is R(k) is the solution to the discrete 

Lyapunov equation

white noise 

with covariance 

M(k)

state

timeoutput

state propagation matrix

… and       is the covariance of the            output process!
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Elements of the mass matrix

The CRB based decomposition can be used to obtain 

explicit expressions for the mass matrix elements

At the component level

diagonal

lower triangular

upper triangular

Recall
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Recursive computation of the mass matrix

recursive, tip-to-base, gather algorithm for the mass matrix based 

on composite body inertias – no explicit computation of operators required

Exploiting the CRB based structure has lowered the cost 

from            to             complexity.  

Originally 

developed by 

Walker & Orin
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Mass matrix computation algorithm structure

Compute diagonal, followed by off-diagonal elements

Computation of the 

mass matrix is rarely 

needed

This is an early example 

of being able to directly 

map operator expressions 

into low-cost recursive 

algorithms
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SOA based Mass Matrix Computation

Dynamics 

properties
Transformed 

Expressions

Spatial Operator 

Algebra (SOA) based 

mathematical analysis

Mapping to structure 

based, recursive 

algorithms

Low-order 

structure-based

algorithms

Composite Rigid 

Body Inertia 

Algorithm for the 

Mass Matrix



36

Trace of the mass matrix

General expression

For 1 dof hinges

zero trace
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Equations of motion
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Deriving equations of motion

Now that we have an expression for the kinetic energy using the mass matrix

we can use it as the Lagrangian in the following to derive the equations of motion:

mass matrix
Coriolis etc. velocity dep. terms

equations of 

motion
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Lagrangian equations of motion

Options:

• The mass matrix is the critical entity for the eq. of motion

• Most dynamics formulations focus on procedures for deriving the  above equations of 

motion as the ultimate goal

• Derive by hand – not feasible beyond a couple of bodies

• Use automatic differentiation. Does the job but we get a black box and an analysis dead 

end

• Can do so analytically, but more complex

• We adopt a simpler Newton-Euler approach instead to build up from single body level –

and use operators to reveal & exploit structure

equations 

of motion
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Equations of motion for a single link
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Force balance for a single link

equal and opposite 

inter-body spatial 

forces

overall spatial forces from the child 

and parent bodies
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Single link equations of motion

Equations of motion for a single link

spatial acceleration
gyroscopic force

generalized force

spatial 

force

where
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Spatial acceleration recursion

Start with the spatial velocity recursion

Differentiate 

Coriolis acceleration
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Coriolis accelerations
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Coriolis acceleration

Assuming joint map matrix is constant

For pure rotational 

or prismatic hinge:

SHOW!
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System level equations of motion
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Overall body level equations of motion

Gathering together all the component body-level 

expressions we have

generalized forces

spatial accels

spatial forces

spatial velocities
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Additional stacked vectors

Define additional system-level stacked vectors for body 

level quantities

generalized forces

spatial forces

Coriolis accels

spatial accels

gyroscopic forces
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Operator expressions for equations of motion

body level expressions

equivalent system-level 

implicit operator 

expressions
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Implicit to explicit

Use                            identity to convert implicit

operator expressions into explicit ones

implicit expressions explicit expressions
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System level equations of motion

Combine the operator expressions to obtain the 

system level equations of motion

familiar mass matrix

Coriolis terms

Newton-Euler factorization

Later – These equations of motion hold for any tree/branched system.
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Equivalence to Lagrangian approach

The equations of motion derived using the Newton-Euler 

approach are the same as we would have obtained using 

alternative approaches such as the Lagrangian approach:

• The mass matrix term equivalence is easy to see

• The Coriolis term takes a lot more work, but can be 

shown to be equivalent 



53

Including external forces
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Including external forces on bodies

Update the force balance equation to include external forces

Using stacked notation

external forces
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Equations of motion with external forces

The equations of motion thus take the form

Can book-keep external forces in Coriolis term

Jacobian matrix
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Including external gravity
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Handling gravity

Gravity effects can be handled as external forces or 

as a pseudo acceleration gravitational 

spatial accel
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Using pseudo-accelerations

Including gravity effect in the Coriolis vector

using the pick-off stacked vector
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Forward and Inverse Dynamics
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Inverse and Forward dynamics

Inverse dynamics: 

• Given the state, and generalized accelerations, use 

the equations of motion to compute the generalized 

forces

• Important for feedforward control applications

Forward dynamics: 

• Given the state, and generalized forces, solve the 

equations of motion to compute the generalized 

accelerations

• Important for simulation applications
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Inverse Dynamics
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Inverse dynamics

• Need to compute RHS of

• First focus on the             mass matrix term

• One option is to compute the         mass matrix 

and then the            product

• This would be at the minimum a            cost 

process for computing the         matrix using 

the optimal CRB algorithm seen earlier

• Can we do better? 
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Exploiting Newton-Euler factorization for computing

can be computed using a sequence of O(N) 

operator/vector products

diagonal matrix times vector

recursive scatter alg.

diagonal matrix times vector

recursive gather alg.

diagonal matrix times vector

Another example of being able to directly map operator expressions 

into low-cost recursive algorithms
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Comptuting Coriolis term 

can also be computed using a sequence of 

scatter and gather O(N) recursions

Moreover we can combine the O(N) recursions into 

a single sequence of scatter and gather recursions.
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Newton-Euler O(N) Recursive Inverse Dynamics

Overall O(N) Newton-

Euler recursive 

inverse dynamics

Base-to-tip O(N) 

recursive scatter 

sweep

Tip-to-base O(N) 

recursive gather

sweep

Originally 

developed by Luh, 

Walker & Paul
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Inverse dynamics algorithm structure

Sequence of scatter and gather O(N) recursive sweeps
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Including external forces and gravity in inverse dynamics

Simply update the spatial forces step in the inverse 

dynamics algorithm to handle external forces and gravity 
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SOA based O(N) Inverse Dynamics

Dynamics 

properties
Transformed 

Expressions

Spatial Operator Algebra 

(SOA) based mathematical 

analysis

Mapping to structure 

based, recursive 

algorithms

O(N) scatter + 

gather

recursions

Low-order 

structure-based

algorithms

Newton-Euler Inverse 

Dynamics Algorithm

Later – The scatter/gather form of the O(N) NE inverse 

dynamics algorithm holds for any tree/branched system.
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Mass matrix using inverse dynamics
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Using inverse dynamics for the mass matrix

The equations of motion are

• The Coriolis vector is zero when velocities, external forces 

and gravity are zero.

• Inverse dynamics with all-zero generalized accel except kth 

element being 1 yields the kth column of the mass matrix

• Repeat this procedure for each element of the generalized 

accels to get the full mass matrix

• The CRB-based algorithm is however faster 
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Structure of the algorithm

Algorithm consists of a sequence of inverse dynamics computations
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Inverse dynamics using CRBs
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Inverse dynamics revisited

• Earlier we exploited the Newton-Euler factorization of 

the mass matrix to develop the O(N) inverse dynamics 

algorithm

• We also developed a CRBs based decomposition of the 

mass matrix

• We now use CRBs to develop an alternative inverse 

dynamics algorithm
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Alternative expression for forces

Have

and

Thus
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CRB-based Inverse dynamics algorithm

• Use CRB gather algorithm to compute the CRB spatial inertias 

• Compute the y values via a gather algorithm

• Compute the generalized forces

Another example of directly 

mapping operator 

expressions into low-cost 

recursive algorithms
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Structure of the algorithm

• This CRB-based algorithm also has O(N) computational cost

• But is more expensive compared to the O(N) NE inverse 

dynamics algorithm
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Inter-body spatial force decompositions

• Ignore Coriolis terms for the moment

• From the equations of motion we had 

• Using CRBs we have the alternative expression

• The more complex inertia term simplifies the residual term in 

the force decompositions

• We will see more such decompositions later

depends on kth

body depends on all bodies

depends on outboard

bodies only

depends on outboard

generalized accels
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Equations of motion using inertial 
reference frame
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Inertially referenced spatial velocities

• We have used alternative choices for body spatial velocity 

and acceleration – including the inertially reference versions

• We can use these for the equations of motion to derive the 

following:
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Observations on new equations of motion

• The component operators are different

• The mass matrix and Coriolis vector however 

remain unchanged SHOW!
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Observations
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Kane’s partial velocities

In the operator expressions

and

the

matrix elements are the “partial velocities” from 

Kane’s method. 

• We would neither get the CRB decomposition of 

the mass matrix or the recursive NE inverse 

dynamics structure if we evaluated          into a 

partial velocities matrix! 

• The operator form is key to preserving structure.
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Transforming SOA operator expressions into recursive algorithms

Dynamics 

properties
Transformed 

Expressions

Mapping to structure 

based, fast recursive 

algorithms

• Exploit structure

• Get new insights

• Solve new problems

• Faster

• More robust

• General approach

• Concise

• Rich vocabulary

Low-order 

structure-based

algorithms

SOA analysis that 

exploits mathematical 

structure of dynamics

“Structure-based”: Because the pattern of the recursive 

algorithms is entirely driven by the underlying multibody topology.
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Summary

• Developed Newton-Euler factorization of the mass 

matrix

• Introduced CRB inertias for the decomposition of the 

mass matrix and its         computation

• Developed operator form of system equations of motion

• Developed O(N) Newton-Euler inverse dynamics 

algorithm

• Explored inverse dynamics based computation of mass 

matrix, and CRB based inverse dynamics and force 

decompositions
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SOA Foundations Track Topics 
(serial-chain rigid body systems)

1. Spatial (6D) notation – spatial velocities, forces, inertias; spatial cross-product, rigid body 

transformations & properties; parallel axis theorem

2. Single rigid body dynamics – equations of motion about arbitrary frame using spatial 

notation

3. Serial-chain kinematics – minimal coordinate formulation, hinges, velocity recursions, 

Jacobians; first spatial operators; O(N) scatter and gather recursions

4. Serial-chain dynamics – equations of motion using spatial operators; Newton–Euler 

mass matrix factorization; O(N) inverse dynamics; composite rigid body inertia; forward 

Lyapunov equation; mass matrix decomposition; mass matrix computation; alternative 

inverse dynamics

5. Articulated body inertia - Concept and definition; Riccati equation; alternative force 

decompositions

6. Mass matrix factorization and inversion – spatial operator identities; Innovations 

factorization of the mass matrix; Inversion of the mass matrix

7. Recursive forward dynamics – O(N) recursive forward dynamics algorithm; including 

gravity and external forces; inter-body forces identity


