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SOA Foundations Track Topics 
(serial-chain rigid body systems)

1. Spatial (6D) notation – spatial velocities, forces, inertias; spatial cross-product, rigid body 

transformations & properties; parallel axis theorem

2. Single rigid body dynamics – equations of motion about arbitrary frame using spatial 

notation

3. Serial-chain kinematics – minimal coordinate formulation, hinges, velocity recursions, 

Jacobians; first spatial operators; O(N) scatter and gather recursions

4. Serial-chain dynamics – equations of motion using spatial operators; Newton–Euler mass 

matrix factorization; O(N) inverse dynamics

5. Mass matrix - composite rigid body inertia; forward Lyapunov equation; mass matrix 

decomposition; mass matrix computation; alternative inverse dynamics

6. Articulated body inertia - Concept and definition; Riccati equation; alternative force 

decompositions

7. Mass matrix factorization and inversion – spatial operator identities; Innovations 

factorization of the mass matrix; Inversion of the mass matrix

8. Recursive forward dynamics – O(N) recursive forward dynamics algorithm; including gravity 

and external forces; inter-body forces identity

See https://dartslab.jpl.nasa.gov/References/index.php for publications and 

references on the SOA methodology.

https://dartslab.jpl.nasa.gov/References/index.php
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Recap from last session

• Introduced 6D spatial notation to allow more concise and simpler 

handling of linear/angular terms together

• Can work away from CM as needed

• Rigid body transformation matrix

• Generalized 6D cross-product

• Used spatial notation to derive equations of motion of a single rigid body

• Equations capture both linear and rotational dynamics and their 

coupling

• Used several choices for generalized velocities

• Structure remained the same, variation in gyroscopic term
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Serial-Chain Rigid Body Kinematics
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Outline

• Why serial chains?

• Hinges

• Configuration and velocity recursive kinematics

• Spatial operator representation

• Gather and scatter recursions

• Jacobians
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Multibody system topologies

closed-chain 

systemstree/branched 

systems
serial-chain 

systems

1 parent, 1 child 1 parent,  children > 1
multiple parents
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Why serial chains?

• Serial-chain rigid body systems are the simplest example of 

multibody systems

• However we do want to use SOA to tackle general multibody 

systems

• rigid/flex bodies

• arbitrary size and branched topologies

• closed-chain topologies

• It turns out that the SOA methods developed for the serial-

chain case carry over virtually entirely to the broader class of 

multibody systems

• Hence we will focus on serial-chains to simplify notation and 

will address generalization later
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Hinges and Constraints
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Inter-connected bodies

• Links/bodies are connected via hinges (aka joints)

Parent body index k+1 > Child body index k;      Tip body has index = 1



10

Generalized coordinates & velocities

• Multibody state is the set of 

generalized coordinates and 

generalized velocities across 

all the hinges

• Often generalized velocities 

are just generalized 

coordinate time derivatives

• Quasi-velocities are a useful 

alternative
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Forward Configuration Kinematics
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Relative body pose 

The relative pose of 

connected bodies

constant for rigid bodies

hinge pose
body to parent 

relative pose
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Computing the pose of any body

• Forward kinematics problem is to compute the pose of any 

body in the system

• The computation of body poses can be done recursively from 

base to tip
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Computing relative pose

The relative pose of any pair of bodies j & k can 

also be computed recursively:
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Hinge Map Matrix
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Hinge differential kinematics

Time derivative of the hinge pose

relative angular velocity relative linear velocity
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Joint map matrix

The joint map matrix maps the (non-dimensional) hinge generalized 

velocities to the relative hinge spatial velocity

joint map matrix

generalized 

velocity

relative hinge 

spatial velocity
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Structure of the joint map matrix

Can partition into angular/linear parts

configuration dofs

can exceed 

velocity dofs
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Examples of joint map matrix

For different types of hinges

For a full 6dof hinge, the hinge map matrix is the identity 

matrix.
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Example:  Ball rolling on a surface

Rolling, no slipping can be treated as a hinge

• Joint map matrix not constant in 

ball frame, only in inertial frame

• For an ellipsoid H is not constant.

Rolling means contact point  

has zero linear velocity
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Velocity Recursion

Body frame at hinge



22

Body frame same as hinge frame

• fff
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Inter-body rigid body transformation matrix

The rigid body 

transformation matrix 

from parent to child body

this is 

configuration 

dependent!
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Body spatial velocity

Propagating body 

spatial velocity 

across hinges

spatial velocity on the 

inboard side of the 

hinge 

spatial velocity on the 

outboard side of the 

hinge 
hinge 

contribution 
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Body spatial velocity computation

Body spatial velocities can be computed via 

a base-to-tip recursive algorithm

Recursive, base-to-tip, O(N) algorithm for the body 

spatial velocities 
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Velocity Recursion

Body frame not at hinge
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Body frame not at the hinge

With minor alteration, the 

recursive body spatial velocity 

relationship continues to hold. 

hinge spatial velocity referenced to 

the body frame
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Inertially referenced body velocities

Can even use inertially referenced 

velocities for all the bodies –

simplifies recursion relationship.

rigid body transformation matrix not needed!

hinge spatial velocity referenced to 

the body frame
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Stacked Notation
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Stacked vectors

• We are interested in system level properties

• Stack up component quantities into system level vectors

overall 

dofs
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More stacked vectors

• Build up additional system-level stacked vectors 

body-level 

expression

equivalent 

system-level 

expression
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First spatial operators
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The         operator 

First operator relating system level spatial velocity stacked vectors

sparse, only one sub-

diagonal with inter-body 

rigid transformation 

matrix elements

Rows: parent body

Columns: child body
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The Joint Map operator

Operator for relative hinge spatial velocities

Block-diagonal with joint 

map matrix elements

Rows: body

Columns: body
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Structural properties of 

• Block-diagonal, and 

non-square, 

• The block-diagonal non-

zero entries are the 

transpose of the 

configuration 

dependent joint map 

matrices for the body 

hinges
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Body spatial velocities expression

Body spatial velocity expression is
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Spatial Operator Recap

Spatial Operators 

Implicit

relationship

recursive

algorithm
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Operator expression for 

While we have operation expression for the system 

level spatial velocities, it is implicit!

both sides

How to get rid of this 

to get an explicit 

expression?
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Explicit velocity expression
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Nilpotent matrices & inverses

• A square matrix      is said to be nilpotent if one of 

its powers becomes 0, i.e. if for some n

• For a nilpotent     , we have

Series expansion terminates after only a finite number of terms for nilpotent matrix, 

hence the 1-resolvent inverse is well defined

1-resolvent
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Derivation of nilpotent relative inverse

Define

Thus

and so
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is nilpotent

• Every power of          results in a matrix with the sub-diagonal shifted one step lower

• At the nth power, the result is zero:   

• Hence         is nilpotent!
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Structural properties of 

• Strictly lower triangular, square,

singular and nilpotent, 

• Only the first sub-diagonal has 

nonzero elements

• The non-zero entries are the 

configuration dependent 6x6

inter-link rigid body transformation 

matrices (configuration dependent)
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The     spatial operator

is nilpotent for a tree system, and we can thus define its 1-resolvent

Lower triangular with 

inter-body rigid 

transformation matrix 

elements

Rows: parent body

Columns: child body
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Structural properties of 

• Lower triangular, square and 

invertible

• Entirely generated by 

• Has identity matrices on the main 

diagonal

• The first sub-diagonal has just the 

elements of

• The other sub-diagonals are powers 

of 

• The lower-triangular entries are 

general, configuration dependent

6x6 rigid body transformation 

matrices
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Explict operator expression for body spatial velocities

Begin with earlier implicit expression

Explicit operator expression for 
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Operator expression and recursions

Explicit

relationship

O(N) recursive

algorithm

The body spatial velocities can be expressed as a spatial operator 

expression, and computed via an equivalent recursive algorithm 
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Spatial operator

Define the new spatial operator

Claim:

Derivation:

Same as     , except diagonal 

elements are now zero matrices 
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Operator expression for 

Claim:

Derivation:
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Operator Expressions 
to

O(N) Scatter recursions
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Base-to-tips structure-based 
O(N) scatter recursion

O(N) structure-based, base-to-tip 

scatter recursion

Algorithm flow

operator transpose/vector product

• Applies to any x

• Does not require explicit 

computation of       at all

• Only depends on elements of 
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Derivation of the scatter recursion

Have
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Scatter recursion example 
Velocity recursion

O(N) scatter recursive algorithm
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Computational Implications

Some noteworthy observations regarding

• For computation, this product can be computed by a base-to-tip 

scatter recursion for any

• We do not need to compute        at all in order to compute the 

product

• The computation cost in O(N), i.e. it only scales linearly with the 

number of bodies n

• Any time we encounter a operator expression with such an 

operator product, we know how to compute it recursively with 

O(N) cost 

• Such mapping is a reflection of underlying structure 

The auto-mapping of spatial operator expressions into low-cost recursive 

algorithms will be a recurring theme 
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Scatter Recursion Example
Body Velocities Computation 

scatter 

algorithm
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Kane’s partial velocities

In the spatial velocities expression

the

matrix elements are the “partial velocities” from Kane’s method. 

The key differences with SOA are

• We never need to compute the partial velocities, or either of 

the operators explicitly

• We keep the operator factors separate and preserve 

structure - unlike Kane’s method where they get mashed up
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Operator Expressions 
to 

O(N) Gather recursions
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Tips-to-base structure-based 
O(N) gather recursion

O(N) structure-based tip-

to-base gather recursion

Algorithm flow

operator/vector product

• Applies to any x

• Does not require explicit 

computation of       at all

• Only depends on elements of 
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Derivation of gather recursion

Have

Thus
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Gather recursion example
Spatial forces propagation

We will encounter 

examples of

operator expressions for 

external spatial forces 

propagation a little later
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Additional O(N) recursions
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O(N) scatter recursion for 

Lets say

where

Thus

Example 

Leads to O(N) scatter recursion

Derivation
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O(N) gather recursion for 

Lets say

where

Thus

Leads to O(N) gather recursion

Derivation
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Reverse Body Indices
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Reversed body indices

Lets say

• We reverse the body indices

• Start with base body index being 1

• Parent index < Child index

• What is the impact?
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Reversed body indices impact on 

super-diagonal
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Reversed body indices impact on 

• The lower sub-diagonal shifts to 

the upper sub-diagonal

• Once again, only parent/child 

entries are non-zero

• is still nilpotent
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Reversed body indices impact on  

• The 1-resolvent of           still 

exists

• However,       is now upper-

triangular

• The duality with recursive 

O(N) algorithm continues to 

hold

• scatter

• gather

Index numbering has little fundamental impact!  For consistency we will 

stick to our tip-to-base numbering for now 
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What about randomized indices?

• The 1-resolvent of           still 

exists

• However, no longer have 

triangular structure

• The duality with recursive 

O(N) algorithm continues to 

hold

• scatter

• gather

The operator sparse structure starts to become non-obvious for 

randomized indices – however it is still there!
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Jacobian operator
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Nodes on a body

There are typically points of interest on 

bodies that we will refer to a nodes, eg.

• End-effector frame for a robot

• Attachment points for actuators and 

sensors

• Reference frames for control 

algorithms

The spatial velocity for a node can be obtained 

from that of its parent body as follows:
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Pick-Off Operator

There are times when we need to narrow attention to the nodes

pick-off 

operator

mapping from body to node spatial velocities

single node spatial velocity

node spatial velocities
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Jacobian Matrix

The Jacobian relates the generalized velocities to the spatial 
velocity of a node of interest

Jacobian

Combining

and

we have

operator expression for 

the Jacobian



74

Example: O(N) compensating torque computation

• Lets say external spatial forces (eg. gravity, task object, 

end-effector forces) are being applied on the system, and 

we need to apply additional hinge torques to counter 

these forces

• The required torques are

• Can compute using O(N) gather recursion
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Transforming SOA operator expressions into recursive algorithms

Dynamics 

properties
Transformed 

Expressions

Mapping to structure 

based, fast recursive 

algorithms

• Exploit structure

• Get new insights

• Solve new problems

• Faster

• More robust

• General approach

• Concise

• Rich vocabulary

Low-order 

structure-based

algorithms

SOA analysis that 

exploits mathematical 

structure of dynamics

“Structure-based”: Because the pattern of the recursive 

algorithms is entirely driven by the underlying multibody topology.
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Summary

• Discussed minimal coordinate kinematics model 

of a rigid body serial-chain

• Introduced stacked notation

• Introduced some spatial operators

• Discussed duality between operator expressions 

and O(N) recursive computations:

• : base-to-tip O(N) scatter recursion

• :  tip-to-base O(N) gather recursion

• Introduced Jacobian and its operator expression
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SOA Foundations Track Topics 
(serial-chain rigid body systems)

1. Spatial (6D) notation – spatial velocities, forces, inertias; spatial cross-product, 

rigid body transformations & properties; parallel axis theorem

2. Single rigid body dynamics – equations of motion about arbitrary frame using 

spatial notation

3. Serial-chain kinematics – minimal coordinate formulation, hinges, velocity 

recursions, Jacobians; first spatial operators; O(N) scatter and gather recursions

4. Serial-chain dynamics – equations of motion using spatial operators; Newton–

Euler mass matrix factorization; O(N) inverse dynamics; composite rigid body 

inertia; forward Lyapunov equation; mass matrix decomposition; mass matrix 

computation; alternative inverse dynamics

5. Articulated body inertia - Concept and definition; Riccati equation; alternative 

force decompositions

6. Mass matrix factorization and inversion – spatial operator identities; Innovations 

factorization of the mass matrix; Inversion of the mass matrix

7. Recursive forward dynamics – O(N) recursive forward dynamics algorithm; 

including gravity and external forces; inter-body forces identity


