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SOA Foundations Track Topics 
(serial-chain rigid body systems)

1. Spatial (6D) notation – spatial velocities, forces, inertias; spatial cross-product, rigid body 

transformations & properties; parallel axis theorem

2. Single rigid body dynamics – equations of motion about arbitrary frame using spatial 

notation

3. Serial-chain kinematics – minimal coordinate formulation, hinges, velocity recursions, 

Jacobians; first spatial operators; O(N) scatter and gather recursions

4. Serial-chain dynamics – equations of motion using spatial operators; Newton–Euler mass 

matrix factorization; O(N) inverse dynamics

5. Mass matrix - composite rigid body inertia; forward Lyapunov equation; mass matrix 

decomposition; mass matrix computation; alternative inverse dynamics

6. Articulated body inertia - Concept and definition; Riccati equation; alternative force 

decompositions

7. Mass matrix factorization and inversion – spatial operator identities; Innovations 

factorization of the mass matrix; Inversion of the mass matrix

8. Recursive forward dynamics – O(N) recursive forward dynamics algorithm; including 

gravity and external forces; inter-body forces identity
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6D Spatial Notation Recap

Spatial notation offers concise & consistent transformation 
expressions for arbitrary non-CM points

Spatial velocities

Spatial inertia

Spatial forces

Kinetic energy

Spatial momentum

rigid body 

transformation matrix
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Spatial Notation Benefits

• Reduces number of equations by half

• Reduces number of terms in each equation by over half

• Reduces types of terms needed – the             rigid body 

transformation matrix does much of the work across the 

board

• Equations apply generally, not just CM

• See consistent patterns (repetition, duality) across the 

different transformations

• There are useful properties involving spatial cross 

product and 
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Single Rigid Body Dynamics
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Outline

• Dynamical systems

• Choosing coordinates

• Single rigid body dynamics
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Dynamical Systems for Multibody
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Dynamical systems

General form of a continuous and smooth dynamical 

system: 

state derivative equation

output equation

state input

output

state

derivative



9

Multibody dynamical systems

• Dynamical systems 

• equations of motion define the state derivative 

equation

• State x: coordinates + velocities

• Inputs u: external forces, gravity

• Outputs y: are poses, velocities, loads etc

• Need to define the multibody coordinates

• May be abstracted from physical space – but could 

be the same
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Generalized Coordinates
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Multibody reference/zero-configuration

• The multibody zero-configuration defines the 

configuration where the state is zero

• Does not have to be a physically meaningful 

configuration

• Defines a reference configuration

single link pendulum

zero configuration 

examples
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Generalized coordinates

• Generalized coordinates    specify 

the configuration of the system

• Generalized velocities are often 

(but not always) just the generalized 

coordinate rates

• The multibody dynamical state

consists of generalized coordinates 

and generalized velocities
single link pendulum
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Hinges and Constraints
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Motion coordinates

• Single link pendulum example

• Permissible motion can be 

described as

• Explicit:  a 1 degree of 

freedom (dof) hinge

• Implicit: or equivalently as 

free 6 dof body, with 5 

motion constraints
single link pendulum
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Hinges minimal coordinates approach

Explicit:  a 1 degree of freedom (dof) hinge
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Constraints approach

• Implicit: or equivalently as free 6 dof body, 

with 5 motion constraints

• Alternative constraints approach: Natural 

coordinates: more redundant coordinates 

using 2 points and a unit vector on the rigid 

body (9 dof, 8 motion constraints)

• Avoids use of rotational coordinates 
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Multiple dof hinges

• We adopt the hinge minimal 

coordinate approach, and try to 

minimize use of constraints

• A hinge can have more than 1 dof
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Examples of Choosing Minimal  
Coordinates
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Example: 2 link pendulum

2 hinges and 2 dofs – overall 

motion is defined by the 

individual motion of the pair 

of hinges
zero 

configuration
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Generalized coordinates – 2 link pendulum

• What are the options for minimal 

coordinates?

• relative angle generalized coordinate

• alternative absolute angle coordinates 

(deviation from the vertical) which is  equally 

valid

We will use relative coordinates

relative 

angle

absolute 

angle

zero 

configuration

Choice of coordinates is not unique

Can easily go between these 

coordinate choices
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Example: Molecular dynamics models

• Collection of point mass atoms, 

motivates 3n dof Cartesian coordinates 

– like for independent gas molecules

• However, with bonds, not all motion 

possible – bonds are stiff with little 

stretching and high frequency

• Common strategy is to freeze and 

eliminate the bond stretching dof to 

generate reduced order model and 

enable large time steps

• This requires imposing constraints 

on the Cartesian coordinates

molecule

3 dof
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BAT coordinates for molecules

• Use alternative bond/angle/torsion (BAT)

“internal” coordinates

• Same 3n number of dofs

• Coupled coordinates

• However these more naturally reflect the 

potentials and motion of a molecule – bond 

angle changes, torsional dofs

• Easy to eliminate stretching dofs by sampling 

ignoring these coordinates – no constraints 

required!

• In fact when doing entropy analysis, Cartesian 

motion are converted into the more appropriate 

BAT coordinates

• Can avoid this by working with BAT 

coordinates in first place

BAT coordinates for a 

molecule
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Choosing generalized coordinates

• The choice of coordinates is not unique

• Should be based on modeling needs

• Imposes requirements on algorithms
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Generalized velocities
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Generalized velocities

• Generalized velocities, denoted    , parameterize the 

velocity motion space

• A common choice is to use the generalized 

coordinate rates    as generalized velocities 

• This is fine in many cases, but does not cover all 

situations
• Lets look at holonomic and non-holonomic cases
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Holonomic case

• Have a function of coordinates that describes the permissible motion

• May be configuration and time dependent

• For pin hinge: dx = dy = dz = eul(1) = eul(2) = 0

• Use gradient                                    (velocity constraint matrix) to obtain 

the velocity relationship 

• Check rank r of gradient matrix, dofs is  (6-r). 

• Number of coordinate and velocity dofs is the same

• Orthogonal complement of gradient matrix specifies permitted relative 

spatial velocities across hinge
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Non-holonomic case

• Start with similar velocity constraint equation

• However, in non-holonomic case, the velocity constraint matrix may 

not be a gradient

• Fewer velocity dofs can change configuration over larger 

dimensional coordinate space!

• Examples

• Ball rolling on the ground: only 3 velocity dofs (all rotational), but 

can change 5 coordinates - all but z value

• Car: only 2 velocity dofs, but can parallel park, i.e. change 3 

coordinates – x, y and heading
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Non-holonomic case (contd)

• Velocity constraint equation

• In non-holonomic case, the velocity constraint matrix may not 

be a gradient

• Check rank r of gradient matrix, dofs is (6-r). 

• Coordinate and velocity dofs may not be the same

• Orthogonal complement of the gradient matrix specifies 

permitted hinge motion (i.e. relative hinge spatial velocities)

Degrees of freedom for a hinge usually refer to the 

velocity space dofs
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Quasi-velocities

• Take the case of a tumbling rigid body – has position and 

attitude dofs – 3 each

• With Euler angle rates, etc for generalized velocities, the 

attitude dynamics are complicated

• Dynamics much simpler using angular velocities

• So why not use angular velocities as generalized velocities! 

• Angular velocities are however not integrable (i.e. not time 

derivatives). Not a problem.

• Such non-integrable generalized velocity coordinates are 

called quasi-velocities
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Generalized forces

• For a rigid body power is given by

• Say                 

• We have transformed power relationship from physical 

to generalized coordinates domain, and used it to 

define the generalized force    .

• Given a choice for generalized velocities    , the power 

relationship automatically defines what      should be

, thus

, with
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Example: Transforming generalized velocities

• Lets say we have a different choice for generalized velocities

• Then by power relationship  

where 

• So the generalized velocities and forces go together – compatible 

pairs defined by the power relationship

• Transforming the generalized velocities, transforms the generalized 

forces as well

• Examples

• Say doubling

• Picking different units

• Picking combinations – relative to absolute angle rates
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Multibody state and state derivatives 

• State:    

• State derivative: 

• Next look at equations of motion for single rigid body
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Single Rigid Body
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Equations of motion

• More than the generalized 

coordinates, the choice of 

generalized velocities directly 

effects the form of the equations 

of motion

• We now look at the equations of 

motion of a single rigid body for 

different choices of generalized 

velocities
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Single rigid body generalized velocities

Generalized velocity coordinate options

inertial reference point I sp. vel

sp. velocity of CM, inertial frame 

sp. velocity of z, body frame 

sp. velocity of z, inertial frame 

All of these options include angular velocity coordinates, and are hence 

quasi-velocities.
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Single rigid body

Center of Mass Dynamics



Coordinates of the spatial velocity of the center of mass 

(CM)  in inertial frame 

37

Generalized velocities – center of mass, inertial

derivative
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Center of mass dynamics

• Derivative of linear and angular momenta at 3D component 

level

• Equivalently using spatial notation

• Spatial momentum is conserved in the absence of external 

spatial forces

angular linear

spatial
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Some notation

Component forms of spatial vectors

angular 

component

linear 

component

decomposition
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Time derivative of spatial inertia

• Inertial and body frame spatial inertia relationship

• Time derivative of the inertial spatial inertia
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CM equations of motion

The CM equations of motion are

with gyroscopic term

gyroscopic  

familiar component 

level term 

gen. accelsp. inertia at 

CM  
sp. force at 

CM  
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CM equations of motion (derivation) 

Have
spatial 

momentum
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CM gyroscopic term 

The gyroscopic term in the CM equations of motion 

does no work, i.e.
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Single rigid body

General point dynamics
Inertial derivatives
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Generalized velocities – arbitrary point, inertial

derivative

Coordinates of spatial velocity of z in inertial frame 
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Generalized velocities – arbitrary point, inertial derivative

• Generalized velocity – spatial velocity in inertial frame

• General acceleration relationship for 

• Relationship to CM generalized velocities

Coriolis 

term
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Equations of Motion with 

The equations of motion with coordinates of 

generalized velocities of point z in inertial frame

with gyroscopic term
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Derivation of equations of motion

Uses CM equations of motion
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Gyroscopic term with  

• Unlike at CM, the gyroscopic forces do work

• Moreover, the spatial momentum about z is not 

constant in the inertial frame in the absence of 

external forces! 
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Single rigid body

General point dynamics
Body derivatives
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Generalized velocities – arbitrary point, body

derivative

Coordinates of spatial velocity of z in body frame 
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Generalized velocity relationship

Relationship between body frame and inertial frame 

generalized velocities
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Equations of Motion with

The equations of motion with coordinates of 

generalized velocities of point z in body frame

with gyroscopic term
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Derivation of equations of motion
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Gyroscopic term with  

• Once again, the gyroscopic spatial force does no 

work

• Kinetic energy conservation easy to verify

• Spatial momentum about z not conserved
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Single rigid body

Inertial Reference Point dynamics
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Generalized velocities – inertially referenced 

spatial velocity 

Coordinates of inertially referenced spatial velocity
• Spatial velocity of I, as if the frame were rigidly 

attached to the body
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Inertially referenced spatial velocity

The inertially referenced spatial velocity is the same 

for all points x on the rigid body!

does not depend 

on the choice of x
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Inertially referenced spatial Inertia

Inertially referenced spatial inertia

and its time derivative

parallel axis theorem 
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Equations of motion with 

The equations of motion with coordinates of the inertially

referenced spatial velocity

with gyroscopic term
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Gyroscopic term with  

• Once again, the gyroscopic spatial force does no work

• Kinetic energy conservation easy to verify

• Inertially referenced spatial momentum is conserved.
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Summary of equations of motion

The following summarizes the properties of the equations of motion from 

the different choice for generalized velocities
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Summary

• Looked at defining the dynamical system for 

multibody systems

• Looked at the choice of generalized coordinates, 

velocities and forces

• Developed equations of motion of a single rigid 

body using spatial notation

• Examined the impact of changing the generalized 

velocities on the equations of motion
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SOA Foundations Track Topics 
(serial-chain rigid body systems)

1. Spatial (6D) notation – spatial velocities, forces, inertias; spatial cross-product, 

rigid body transformations & properties; parallel axis theorem

2. Single rigid body dynamics – equations of motion about arbitrary frame using 

spatial notation

3. Serial-chain kinematics – minimal coordinate formulation, hinges, velocity 

recursions, Jacobians; first spatial operators; O(N) scatter and gather recursions

4. Serial-chain dynamics – equations of motion using spatial operators; Newton–

Euler mass matrix factorization; O(N) inverse dynamics; composite rigid body 

inertia; forward Lyapunov equation; mass matrix decomposition; mass matrix 

computation; alternative inverse dynamics

5. Articulated body inertia - Concept and definition; Riccati equation; alternative 

force decompositions

6. Mass matrix factorization and inversion – spatial operator identities; Innovations 

factorization of the mass matrix; Inversion of the mass matrix

7. Recursive forward dynamics – O(N) recursive forward dynamics algorithm; 

including gravity and external forces; inter-body forces identity


