

Dynamics and Real-Time Simulation (DARTS) Laboratory

Spatial Operator Algebra (SOA)

2. Single Rigid-Body Dynamics

Abhinandan Jain

June 19, 2024

<https://dartslab.jpl.nasa.gov/>

Jet Propulsion Laboratory California Institute of Technology

SOA Foundations Track Topics (serial-chain rigid body systems)

- **1. Spatial (6D) notation** spatial velocities, forces, inertias; spatial cross-product, rigid body transformations & properties; parallel axis theorem
- **2. Single rigid body dynamics** equations of motion about arbitrary frame using spatial notation
- **3. Serial-chain kinematics** minimal coordinate formulation, hinges, velocity recursions, Jacobians; first spatial operators; O(N) scatter and gather recursions
- **4. Serial-chain dynamics** equations of motion using spatial operators; Newton–Euler mass matrix factorization; O(N) inverse dynamics
- **5. Mass matrix -** composite rigid body inertia; forward Lyapunov equation; mass matrix decomposition; mass matrix computation; alternative inverse dynamics
- **6. Articulated body inertia -** Concept and definition; Riccati equation; alternative force decompositions
- **7. Mass matrix factorization and inversion** spatial operator identities; Innovations factorization of the mass matrix; Inversion of the mass matrix
- **8. Recursive forward dynamics** O(N) recursive forward dynamics algorithm; including gravity and external forces; inter-body forces identity

6D Spatial Notation Recap

Spatial notation offers concise & consistent transformation expressions for arbitrary non-CM points

> *rigid body* ${}^{transformation \, matrix}$
 ${}^{C}\mathcal{V}(A,C) = \varphi^*(B,C) \frac{B\mathcal{V}(A,B)}{B}$ Spatial velocities $B_f(B) = \phi(B, C) C_f(C)$ Spatial forces Spatial inertia $M(x) = \phi(x, y)M(y)\phi^*(x, y)$ Kinetic energy $\mathfrak{K}_e = \frac{1}{2} \mathcal{V}^*(x) M(x) \mathcal{V}(x) = \frac{1}{2} \mathcal{V}^*(y) M(y) \mathcal{V}(y)$ $\mathfrak{h}(x) = \mathfrak{\phi}(x, y) \mathfrak{h}(y)$ Spatial momentum

Spatial Notation Benefits

- Reduces number of equations by half
- Reduces number of terms in each equation by over half
- Reduces types of terms needed the $\Phi(x, y)$ rigid body *transformation matrix* does much of the work across the board
- Equations apply generally, not just CM
- See consistent patterns (repetition, duality) across the different transformations
- There are useful properties involving spatial cross product and $\varphi(x, y)$

Single Rigid Body Dynamics

- Dynamical systems
- Choosing coordinates
- Single rigid body dynamics

Dynamical Systems for Multibody

Dynamical systems

General form of a continuous and smooth dynamical system:

Multibody dynamical systems

- Dynamical systems
	- **equations of motion** define the state derivative equation
	- **State x:** coordinates + velocities
	- **Inputs u:** external forces, gravity
	- **Outputs y:** are poses, velocities, loads etc
- Need to define the multibody coordinates
	- May be abstracted from physical space but could be the same

Generalized Coordinates

Multibody reference/zero-configuration

- The multibody zero-configuration defines the configuration where the state is zero
- Does not have to be a physically meaningful configuration
- Defines a reference configuration

Generalized coordinates

- **Generalized coordinates specify** the configuration of the system
- **Generalized velocities** are often (but not always) just the generalized coordinate ratesa
- The multibody dynamical **state** consists of generalized coordinates and generalized velocities

single link pendulum

Hinges and Constraints

Motion coordinates

- Single link pendulum example
- Permissible motion can be described as
	- **Explicit:** a 1 degree of freedom (dof) **hinge**
	- **Implicit:** or equivalently as free 6 dof body, with 5 motion **constraints**

Hinges minimal coordinates approach

Explicit: a 1 degree of freedom (dof) **hinge**

Constraints approach

• **Implicit:** or equivalently as free 6 dof body, with 5 motion **constraints**

- **Alternative constraints approach:** *Natural coordinates:* more redundant coordinates using 2 points and a unit vector on the rigid body (9 dof, 8 motion constraints)
	- Avoids use of rotational coordinates

Multiple dof hinges

- We adopt the hinge **minimal coordinate approach**, and try to minimize use of constraints
- A hinge can have more than 1 dof

Examples of Choosing Minimal Coordinates

2 hinges and 2 dofs – overall motion is defined by the individual motion of the pair of hinges

zero configuration

Generalized coordinates – 2 link pendulum

- What are the options for minimal coordinates?
- relative angle generalized coordinate

Choice of coordinates is not unique Can easily go between these coordinate choices

• alternative absolute angle coordinates (deviation from the vertical) which is equally valid

We will use **relative** coordinates

20

Example: Molecular dynamics models

- Collection of point mass atoms, motivates **3n dof** Cartesian coordinates – like for independent gas molecules
- However, with bonds, not all motion possible – bonds are stiff with little stretching and high frequency
- Common strategy is to freeze and eliminate the bond stretching dof to generate reduced order model and enable large time steps
	- This requires imposing constraints on the Cartesian coordinates

BAT coordinates for molecules

- Use alternative **bond/angle/torsion (BAT)** "internal" coordinates
- Same 3n number of dofs
- Coupled coordinates
- However these more naturally reflect the potentials and motion of a molecule – bond angle changes, torsional dofs
- Easy to eliminate stretching dofs by sampling ignoring these coordinates – no constraints required!
- In fact when doing entropy analysis, Cartesian motion are converted into the more appropriate BAT coordinates
	- Can avoid this by working with BAT
- 22 coordinates in first place

Choosing generalized coordinates

- The choice of coordinates is not unique
- Should be based on modeling needs
- Imposes requirements on algorithms

Generalized velocities

Generalized velocities

- \cdot Generalized velocities, denoted β parameterize the velocity motion space
- A common choice is to use the generalized coordinate rates $\dot{\theta}$ as generalized velocities

$$
\beta=\dot{\theta}
$$

- This is fine in many cases, but does not cover all situations
	- Lets look at holonomic and non-holonomic cases

Holonomic case

• Have a function of coordinates that describes the permissible motion

 $\mathfrak{d}(\theta,\mathsf{t})=\mathbf{0}$

- May be configuration and time dependent
- For **pin** hinge: $dx = dy = dz = eul(1) = eul(2) = 0$
- Use gradient $G_c(\theta, t) \stackrel{\triangle}{=} \nabla_{\theta} \mathfrak{d}(\theta, t)$ (velocity constraint matrix) to obtain the velocity relationship

$$
\boldsymbol{\dot{\mathfrak{d}}}(\boldsymbol{\theta},t)=G_c(\boldsymbol{\theta},t)\boldsymbol{\dot{\theta}}-\mathfrak{U}(t)=\boldsymbol{0}
$$

- Check **rank r** of gradient matrix, **dofs is (6-r).**
- Number of coordinate and velocity dofs is the same
- Orthogonal complement of gradient matrix specifies permitted relative spatial velocities across hinge

Non-holonomic case

• Start with similar velocity constraint equation

$$
G_c(\theta,t)\bm{\dot{\theta}}-\mathfrak{U}(t)=\bm{0}
$$

- However, in non-holonomic case, the velocity constraint matrix may **not be a gradient**
- *Fewer velocity dofs can change configuration over larger dimensional coordinate space!*

• **Examples**

- Ball rolling on the ground: only 3 velocity dofs (all rotational), but can change 5 coordinates - all but z value
- Car: only 2 velocity dofs, but can parallel park, i.e. change 3 coordinates $- x$, y and heading

Non-holonomic case (contd)

• Velocity constraint equation

$$
G_c(\theta,t)\mathring{\theta}-\mathfrak{U}(t)=0
$$

- In non-holonomic case, the velocity constraint matrix may **not be a gradient**
- Check rank r of gradient matrix, **dofs is (6-r).**
- Coordinate and velocity dofs may **not** be the same
- Orthogonal complement of the gradient matrix specifies permitted hinge motion (i.e. relative hinge spatial velocities)

Degrees of freedom for a hinge usually refer to the velocity space dofs

Quasi-velocities

- Take the case of a tumbling rigid body has position and attitude dofs – 3 each
- With Euler angle rates, etc for generalized velocities, the attitude dynamics are complicated
- Dynamics much simpler using angular velocities

$$
\mathscr{J}\mathring{\boldsymbol{\omega}}+\,\widetilde{\boldsymbol{\omega}}\,\mathscr{J}\boldsymbol{\omega}=\mathfrak{f}
$$

- So why not use angular velocities as generalized velocities!
- Angular velocities are however **not integrable** (i.e. not time derivatives). Not a problem.
- Such non-integrable generalized velocity coordinates are called **quasi-velocities**

et Propulsion Laboratoı

Generalized forces

• For a rigid body power is given by

$$
power = f^* \cdot \mathcal{V}
$$

• Say $\mathcal{V} = A\beta$, thus

$$
power = f^* \cdot A\beta = \mathcal{T}^*\beta, \text{ with } \mathcal{T} = A^*f
$$

- We have transformed power relationship from physical to generalized coordinates domain, and used it to define the **generalized force** \mathcal{T} .
- Given a choice for generalized velocities β , the power relationship automatically defines what $\mathcal T$ should be

Example: Transforming generalized velocities

• Lets say we have a different choice for generalized velocities

$$
\beta_1 = A(\theta) \beta
$$

• Then by power relationship

$$
power = \mathfrak{T}^*\cdot \beta = \mathfrak{T}^*\cdot A^{-1}\beta_1 = \mathfrak{T}_1^*\cdot \beta_1 \text{ where } \mathfrak{T}_1 = A^{-*}\mathfrak{T}
$$

- So the generalized velocities and forces go together compatible pairs defined by the power relationship
- Transforming the generalized velocities, transforms the generalized forces as well
- Examples
	- Say doubling
	- Picking different units
	- Picking combinations relative to absolute angle rates

Multibody state and state derivatives

- State: $x = (\theta, \beta)$
- State derivative: $\dot{x} = (\dot{\theta}, \dot{\beta})$
- Next look at equations of motion for single rigid body

$$
\dot{x}(t) = g(x(t), u(t))
$$

Single Rigid Body

Equations of motion

- More than the generalized coordinates, the choice of generalized velocities directly effects the form of the equations of motion
- We now look at the equations of motion of a single rigid body for different choices of generalized velocities

Single rigid body generalized velocities

Generalized velocity coordinate options

 $\beta_{\mathcal{I}} = \mathbb{I} \mathcal{V}(\mathbb{C})$ sp. velocity of CM, inertial frame

 $\beta_{\mathcal{I}} = {}^{\mathbb{I}}\mathcal{V}(z)$ sp. velocity of z, inertial frame

 $\beta_{\mathbb{B}} = \mathbb{B} \mathcal{V}(z)$ sp. velocity of z, body frame

$$
\beta_{\mathbb{I}} \ \stackrel{\triangle}{=} \ ^{\mathbb{I}}\mathcal{V}_{\mathbb{I}} \ \stackrel{\triangle}{=} \ \varphi^*(\mathbb{C},\mathbb{I})\mathcal{V}(\mathbb{C}) \ \ \text{inertial reference point I sp. vel}
$$

All of these options include angular velocity coordinates, and are hence quasi-velocities.

Single rigid body

Center of Mass Dynamics

Generalized velocities – center of mass, inertial derivative

Coordinates of the spatial velocity of the center of mass (CM) in inertial frame

Center of mass dynamics

• Derivative of linear and angular momenta at 3D component level angular linear linear

 $N(\mathbb{C}) = \frac{d_{\mathbb{I}} \mathscr{J}(\mathbb{C}) \omega(\mathbb{C})}{dt}$ and $F(\mathbb{C}) = \frac{d_{\mathbb{I}} m v(\mathbb{C})}{dt}$

• Equivalently using spatial notation

$$
\mathfrak{f}(\mathbb{C})=\frac{\mathrm{d}_\mathbb{I} M(\mathbb{C})\mathcal{V}(\mathbb{C})}{\mathrm{d} t}=\frac{\mathrm{d}_\mathbb{I}\mathfrak{h}(\mathbb{C})}{\mathrm{d} t}
$$

• Spatial momentum is conserved in the absence of external spatial forces

39

$X = X^{\omega} + X^{\nu}$ *decompositionangular component* $\mathcal{V}^{\mathbf{v}}(\mathbf{x}) \triangleq \begin{bmatrix} \mathbf{0} \\ v(\mathbf{x}) \end{bmatrix}$
linear *component* $\widetilde{\mathcal{V}}^{\boldsymbol{\omega}}(z) \ = \left(\begin{array}{cc} \widetilde{\boldsymbol{\omega}} & \boldsymbol{0} \ \boldsymbol{0} & \widetilde{\boldsymbol{\omega}} \end{array} \right) \, ,$

Component forms of spatial vectors

Some notation

Time derivative of spatial inertia

• Inertial and body frame spatial inertia relationship

$$
{}^{\mathbb{I}}\mathsf{M}(z)=\left(\begin{matrix}{}^{\mathbb{I}}\mathfrak{R}_{\mathbb{B}}&\mathbf{0}\\ \mathbf{0}&{}^{\mathbb{I}}\mathfrak{R}_{\mathbb{B}}\end{matrix}\right){}^{\mathbb{B}}\mathsf{M}(z)\left(\begin{matrix}{}^{\mathbb{B}}\mathfrak{R}_{\mathbb{I}}&\mathbf{0}\\ \mathbf{0}&{}^{\mathbb{B}}\mathfrak{R}_{\mathbb{I}}\end{matrix}\right)
$$

• Time derivative of the inertial spatial inertia

$$
\mathbf{\hat{M}}(z) = \begin{pmatrix} \widetilde{\omega} & \mathbf{0} \\ \mathbf{0} & \widetilde{\omega} \end{pmatrix} \mathbb{B}_{\mathbf{M}(z) - \mathbf{M}(z)} \begin{pmatrix} \widetilde{\omega} & \mathbf{0} \\ \mathbf{0} & \widetilde{\omega} \end{pmatrix}
$$

$$
= \frac{\widetilde{\gamma}^{\omega}(z)M(z) - M(z)\widetilde{\gamma}^{\omega}(z)}{\widetilde{\omega}}
$$

CM equations of motion

The CM equations of motion are

$$
\mathop{\mathbf{f}}_{\text{sp. force at}}(\mathop{\mathbb{C}}_{\text{sp. inertia at}}) = M(\mathop{\mathbb{C}}_{\text{sp. inertia at}}) \mathop{\mathbf{f}}_{\text{gen. accel}}(\mathop{\mathbb{C}}_{\text{guroscopic}}) + \mathop{\mathbf{b}}_{\text{gyroscopic}}(\mathop{\mathbb{C}}_{\text{cm}}
$$

familiar component with gyroscopic term *level term* $\mathfrak{b}_{\mathfrak{I}}(\mathbb{C}) \triangleq \widetilde{\mathcal{V}}^{\omega}(\mathbb{C})M(\mathbb{C})\mathcal{V}^{\omega}(\mathbb{C})$ = $\overline{V}^{\omega}(\mathbb{C})M(\mathbb{C})V^{\omega}(\mathbb{C}) = \begin{bmatrix} \widetilde{\omega} \mathscr{J}(\mathbb{C})\omega \\ 0 \end{bmatrix}$

CM equations of motion (derivation)

$$
\begin{array}{ll}\n\text{Have} & f(\mathbb{C}) = \frac{d_{\mathbb{I}} M(\mathbb{C}) \mathcal{V}(\mathbb{C})}{dt} \xrightarrow{\text{spatial} \\
\text{from the following: } \mathcal{V}(\mathbb{C}) \text{ and } \mathcal{V}(\mathbb{C}) \text{ and } \mathcal{V}(\mathbb{C}) \text{ and } \mathcal{V}(\mathbb{C}) \text{ and } \mathcal{V}(\mathbb{C})\n\end{array}
$$

$$
\begin{aligned}\n&\text{(C)} \stackrel{2.21}{=} M(\mathbb{C}) \mathbf{\dot{\beta}}_{\mathcal{I}}(\mathbb{C}) + \frac{\mathbf{u}_{\mathbb{I}} \mathcal{W}(\mathbb{C})}{\mathrm{d}t} \mathcal{V}(\mathbb{C}) \\
&\stackrel{2.22}{=} M(\mathbb{C}) \mathbf{\dot{\beta}}_{\mathcal{I}}(\mathbb{C}) + \left[\widetilde{\mathcal{V}}^{\omega}(\mathbb{C}) M(\mathbb{C}) - M(\mathbb{C}) \widetilde{\mathcal{V}}^{\omega}(\mathbb{C}) \right] \mathcal{V}(\mathbb{C}) \\
&\stackrel{1.25}{=} M(\mathbb{C}) \mathbf{\dot{\beta}}_{\mathcal{I}}(\mathbb{C}) + \widetilde{\mathcal{V}}^{\omega}(\mathbb{C}) M(\mathbb{C}) \mathcal{V}^{\omega}(\mathbb{C}) \\
&\quad + \left[\widetilde{\mathcal{V}}^{\omega}(\mathbb{C}) M(\mathbb{C}) \mathcal{V}^{\nu}(\mathbb{C}) - M(\mathbb{C}) \widetilde{\mathcal{V}}^{\omega}(\mathbb{C}) \mathcal{V}^{\nu}(\mathbb{C}) \right] \\
&\stackrel{2.10}{=} M(\mathbb{C}) \mathbf{\dot{\beta}}_{\mathcal{I}}(\mathbb{C}) + \widetilde{\mathcal{V}}^{\omega}(\mathbb{C}) M(\mathbb{C}) \mathcal{V}^{\omega}(\mathbb{C})\n\end{aligned}
$$

CM gyroscopic term

$$
\mathfrak{b}_{\mathfrak{I}}(\mathbb{C}) \stackrel{\triangle}{=} \widetilde{\mathcal{V}}^{\omega}(\mathbb{C})M(\mathbb{C})\mathcal{V}^{\omega}(\mathbb{C})
$$

$$
= \overline{\mathcal{V}}^{\omega}(\mathbb{C})M(\mathbb{C})\mathcal{V}^{\omega}(\mathbb{C}) = \left[\begin{matrix} \widetilde{\omega} \mathscr{J}(\mathbb{C})\omega \\ \mathbf{0} \end{matrix}\right]
$$

The gyroscopic term in the CM equations of motion does no work, i.e.

$$
\boxed{\mathcal{V}^*(\mathbb{C})\mathfrak{b}_{\mathbb{J}}(\mathbb{C}) = 0}
$$

Single rigid body

General point dynamics Inertial derivatives

Generalized velocities – arbitrary point, inertial derivative

Coordinates of spatial velocity of z in inertial frame

Generalized velocities – arbitrary point, inertial derivative

• Generalized velocity – spatial velocity in inertial frame

$$
\beta_{\mathcal{I}} = {}^{\mathbb{I}}\mathcal{V}(z)
$$

• General acceleration relationship for $V(y) = \phi^*(x, y) V(x)$

$$
\begin{array}{rcl}\n\dot{\mathbf{B}}_{\mathbb{J}}(y) & \stackrel{\triangle}{=} & \frac{d_{\mathbb{I}}\mathcal{V}(y)}{dt} = \boldsymbol{\varphi}^*(x, y)\dot{\mathbf{B}}_{\mathbb{J}}(x) - \widetilde{\mathcal{V}}(y)\mathcal{V}(x) \\
& = \boldsymbol{\varphi}^*(x, y)\dot{\mathbf{B}}_{\mathbb{J}}(x) + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \widetilde{\boldsymbol{\omega}} & \widetilde{\boldsymbol{\omega}} & \mathfrak{l}(x, y) \end{bmatrix} \begin{array}{rcl}\n\text{Coriolis} \\
\text{term}\n\end{array}
$$

• Relationship to CM generalized velocities

$$
\mathbf{\dot{B}}_{\mathbb{J}}(z) \ \stackrel{\triangle}{=} \ \frac{\mathrm{d}_{\mathbb{I}} \mathcal{V}(z)}{\mathrm{d} t} = \varphi^*(\mathbb{C},z) \mathbf{\dot{B}}_{\mathbb{J}}(\mathbb{C}) + \begin{bmatrix} \mathbf{0} \\ -\,\widetilde{\boldsymbol{\omega}}\,\,\widetilde{\boldsymbol{\omega}}\,\,p(z) \end{bmatrix}
$$

Equations of Motion with $\beta_{\mathcal{I}} = \mathbb{I} \mathcal{V}(z)$

The equations of motion with coordinates of generalized velocities of point z in inertial frame

$$
\mathfrak{f}(z)=M(z)\mathring{\beta}_\mathfrak{I}(z)+\mathfrak{b}_\mathfrak{I}(z)
$$

with gyroscopic term

$$
\begin{aligned} \mathfrak{b}_{\mathfrak{I}}(z) &\stackrel{\triangle}{=} \widetilde{\mathcal{V}}^{\omega}(z)M(z)\mathcal{V}^{\omega}(z) = \overline{\mathcal{V}}^{\omega}(z)M(z)\mathcal{V}^{\omega}(z) \\ &= \begin{bmatrix} \widetilde{\omega} \mathscr{J}(z)\omega \\ \mathfrak{m}\,\widetilde{\omega}\,\widetilde{\omega}\,\,p(z) \end{bmatrix} \end{aligned}
$$

Derivation of equations of motion

Uses CM equations of motion

Ì

$$
M(z)\dot{\beta}_{\mathcal{I}}(z) \stackrel{2.25}{=} \underbrace{M(z) \left(\phi^*(\mathbb{C},z)\dot{\beta}_{\mathcal{I}}(\mathbb{C}) + \begin{bmatrix} 0 \\ -\widetilde{\omega}\,\widetilde{\omega} \,p(z) \end{bmatrix}\right)}_{2.12,2.7} \underbrace{M(z) \left(\phi^*(\mathbb{C},z)\dot{\beta}_{\mathcal{I}}(\mathbb{C}) - \begin{bmatrix} \mathfrak{m}\,\widetilde{p}(z)\,\widetilde{\omega}\,\widetilde{\omega} \,p(z) \\ \mathfrak{m}\,\widetilde{\omega}\,\widetilde{\omega} \,p(z) \end{bmatrix}}_{2.23, A.1} \underbrace{\phi(z,\mathbb{C}) \left(\mathfrak{f}(\mathbb{C}) - \begin{bmatrix} \widetilde{\omega}\,\mathscr{J}(\mathbb{C})\omega \\ 0 \end{bmatrix}\right) - \begin{bmatrix} -\mathfrak{m}\,\widetilde{\omega}\,\widetilde{p}(z)\,\widetilde{p}(z)\omega \\ \mathfrak{m}\,\widetilde{\omega}\,\widetilde{\omega} \,p(z) \end{bmatrix}}_{1.66} \underbrace{\mathfrak{f}(z) - \begin{bmatrix} \widetilde{\omega}(\mathscr{J}(\mathbb{C}) - \mathfrak{m}\,\widetilde{p}(z)\,\widetilde{p}(z))\omega \\ \mathfrak{m}\,\widetilde{\omega}\,\widetilde{\omega} \,p(z) \end{bmatrix}}_{2.11} \mathfrak{f}(z) - \begin{bmatrix} \widetilde{\omega}\,\mathscr{J}(z)\omega \\ \mathfrak{m}\,\widetilde{\omega}\,\widetilde{\omega} \,p(z) \end{bmatrix}
$$

Gyroscopic term with $\beta_{\text{J}} = \mathbb{I} \mathcal{V}(z)$

- Unlike at CM, the gyroscopic forces do work
- Moreover, the spatial momentum about z is not constant in the inertial frame in the absence of external forces!

$$
\mathfrak{f}(z)\neq\frac{\mathrm{d}_{\mathbb{I}}\mathfrak{h}(z)}{\mathrm{d}t}
$$

Single rigid body

General point dynamics Body derivatives

Generalized velocities – arbitrary point, body derivative

Coordinates of spatial velocity of z in body frame

Generalized velocity relationship

Relationship between body frame and inertial frame generalized velocities

$$
\beta_{\mathbb{B}} = {}^{\mathbb{B}}\mathcal{V}(z) \qquad \qquad \beta_{\mathcal{I}} = {}^{\mathbb{I}}\mathcal{V}(z)
$$

$$
\hat{\beta}_{\mathbb{B}}(z) = \hat{\beta}_{\mathbb{J}}(z) - \begin{bmatrix} 0 \\ \tilde{\omega} \; \nu(z) \end{bmatrix}
$$

Equations of Motion with $\beta_{\mathbb{B}} = \mathbb{B} \mathcal{V}(z)$

The equations of motion with coordinates of generalized velocities of point z in body frame

$$
\mathfrak{f}(z)=M(z)\mathring{\beta}_{\mathbb{B}}(z)+\mathfrak{b}(z)
$$

with gyroscopic term

$$
\mathfrak{b}(z) \ \stackrel{\triangle}{=} \ \overline{\mathcal{V}}(z) \mathfrak{h}(z) = \overline{\mathcal{V}}(z) M(z) \mathcal{V}(z)
$$

Derivation of equations of motion

$$
M(z)\dot{\beta}_{\mathbb{B}}(z) \stackrel{2.19}{=} M(z) \left(\dot{\beta}_{\mathcal{I}}(z) - \begin{bmatrix} 0 \\ \tilde{\omega} \nu(z) \end{bmatrix} \right)
$$

\n
$$
2.26.2.7 \ f(z) - \begin{bmatrix} \tilde{\omega} \neq (z) \omega \\ m \tilde{\omega} \tilde{\omega} p(z) \end{bmatrix} - \begin{bmatrix} m \tilde{p}(z) \tilde{\omega} \nu(z) \\ m \tilde{\omega} \nu(z) \end{bmatrix}
$$

\n
$$
= f(z) - \begin{bmatrix} \tilde{\omega} \neq (z) \omega + m \tilde{p}(z) \tilde{\omega} \nu(z) \\ m \tilde{\omega} \tilde{\omega} p(z) + m \tilde{\omega} \nu(z) \end{bmatrix}
$$

\n
$$
\stackrel{A.1}{=} f(z) - \begin{bmatrix} \tilde{\omega} \neq (z) \omega - m(\tilde{\omega} \tilde{\nu}(z) p(z) + \tilde{\nu}(z) \tilde{p}(z) \omega) \\ m \tilde{\omega}(\tilde{\omega} p(z) + \nu(z)) \end{bmatrix}
$$

\n
$$
= f(z) - \begin{bmatrix} \tilde{\omega}(\neq (z) \omega + m \tilde{p}(z) \nu(z)) - m \tilde{\nu}(z) \tilde{p}(z) \omega \\ m \tilde{\omega}(\tilde{\omega} p(z) + \nu(z)) \end{bmatrix}
$$

\n
$$
= f(z) - \overline{\nu}(z) \begin{bmatrix} \neq (z) \omega + m \tilde{p}(z) \nu(z) \\ -m \tilde{p}(z) \omega + m \nu(z) \end{bmatrix}
$$

\n
$$
\stackrel{2.7}{=} f(z) - \overline{\nu}(z) M(z) \nu(z) \stackrel{2.16}{=} f(z) - \overline{\nu}(z) \mathfrak{h}(z)
$$

Gyroscopic term with $\beta_{\mathbb{B}} = {}^{\mathbb{B}}V(z)$

• Once again, the gyroscopic spatial force does no work

$$
\mathcal{V}^*(z)\mathfrak{b}(z) \stackrel{2.28}{=} \mathcal{V}^*(z)\overline{\mathcal{V}}(z)\mathfrak{h}(z) \stackrel{1.27}{=} 0
$$

• Kinetic energy conservation easy to verify

$$
\frac{1}{2}\frac{\mathrm{d}\mathcal{V}^*(z)M(z)\mathcal{V}(z)}{\mathrm{d}t}=\mathcal{V}^*(z)M(z)\mathbf{\dot{\beta}}_{\mathbb{B}}(z)\overset{2.28}{=}-\mathcal{V}^*(z)\mathfrak{b}(z)\overset{2.29}{=0}
$$

• Spatial momentum about z not conserved

Single rigid body

Inertial Reference Point dynamics

Generalized velocities – inertially referenced spatial velocity

Coordinates of inertially referenced spatial velocity

• Spatial velocity of **I,** as if the frame were rigidly attached to the body

Inertially referenced spatial velocity

The inertially referenced spatial velocity is the same for all points x on the rigid body!

$$
\mathcal{V}_{\mathbb{I}}=\varphi^*(x,\mathbb{I})\ \mathcal{V}(x)
$$

does not depend on the choice of x

Inertially referenced spatial Inertia

Inertially referenced spatial inertia

$$
M_{\mathbb{I}} \stackrel{\triangle}{=} \varphi(\mathbb{I}, \mathbb{C}) M(\mathbb{C}) \varphi^*(\mathbb{I}, \mathbb{C}) = \begin{pmatrix} \mathscr{J}_{\mathbb{I}} & \mathfrak{m} \, \widetilde{p}_{\mathbb{I}} \\ -\mathfrak{m} \, \widetilde{p}_{\mathbb{I}} & \mathfrak{m} I_3 \end{pmatrix}
$$
\n
$$
\text{parallel axis theorem}
$$

and its time derivative

$$
\boldsymbol{\dot{M}_{\mathbb{I}}} \;\triangleq\; \frac{\text{d}_{\mathbb{I}} M_{\mathbb{I}}}{\text{d} t} = \overline{\mathcal{V}}_{\mathbb{I}} M_{\mathbb{I}} - M_{\mathbb{I}} \, \widetilde{\mathcal{V}}_{\mathbb{I}} = \overline{\mathcal{V}}_{\mathbb{I}} M_{\mathbb{I}} + M_{\mathbb{I}} \left(\overline{\mathcal{V}}_{\mathbb{I}}\right)^*
$$

Equations of motion with $\beta_{\mathbb{I}} \stackrel{\triangle}{=} \mathbb{I} \mathcal{V}_{\mathbb{I}}$

The equations of motion with coordinates of the inertially referenced spatial velocity

$$
\mathfrak{f}_{\mathbb{I}}=M_{\mathbb{I}}\mathring{\beta}_{\mathbb{I}}+\mathfrak{b}_{\mathbb{I}}
$$

with gyroscopic term

$$
\mathfrak{b}_\mathbb{I} \ \stackrel{\triangle}{=} \ \mathring{M}_\mathbb{I} \mathcal{V}_\mathbb{I} = \overline{\mathcal{V}}_\mathbb{I} M_\mathbb{I} \mathcal{V}_\mathbb{I}
$$

• Once again, the gyroscopic spatial force does no work

• Kinetic energy conservation easy to verify

• Inertially referenced spatial momentum is conserved.

Summary of equations of motion

Jet Propulsion Lal

The following summarizes the properties of the equations of motion from the different choice for generalized velocities

- Looked at defining the dynamical system for multibody systems
- Looked at the choice of generalized coordinates, velocities and forces
- Developed equations of motion of a single rigid body using spatial notation
- Examined the impact of changing the generalized velocities on the equations of motion

SOA Foundations Track Topics (serial-chain rigid body systems)

- **1. Spatial (6D) notation** spatial velocities, forces, inertias; spatial cross-product, rigid body transformations & properties; parallel axis theorem
- **2. Single rigid body dynamics** equations of motion about arbitrary frame using spatial notation
- **3. Serial-chain kinematics** minimal coordinate formulation, hinges, velocity recursions, Jacobians; first spatial operators; O(N) scatter and gather recursions
- **4. Serial-chain dynamics** equations of motion using spatial operators; Newton– Euler mass matrix factorization; O(N) inverse dynamics; composite rigid body inertia; forward Lyapunov equation; mass matrix decomposition; mass matrix computation; alternative inverse dynamics
- **5. Articulated body inertia -** Concept and definition; Riccati equation; alternative force decompositions
- **6. Mass matrix factorization and inversion** spatial operator identities; Innovations factorization of the mass matrix; Inversion of the mass matrix
- **7. Recursive forward dynamics** O(N) recursive forward dynamics algorithm; including gravity and external forces; inter-body forces identity

