

Dynamics and Real-Time Simulation (DARTS) Laboratory

Spatial Operator Algebra (SOA)

1. Spatial Notation

Abhinandan Jain

June 19, 2024

https://dartslab.jpl.nasa.gov/

Jet Propulsion Laboratory California Institute of Technology

SOA Foundations Track Topics (serial-chain rigid body systems)

- 1. **Spatial (6D) notation** spatial velocities, forces, inertias; spatial cross-product, rigid body transformations & properties; parallel axis theorem
- 2. Single rigid body dynamics equations of motion about arbitrary frame using spatial notation
- **3. Serial-chain kinematics** minimal coordinate formulation, hinges, velocity recursions, Jacobians; first spatial operators; O(N) scatter and gather recursions
- Serial-chain dynamics equations of motion using spatial operators; Newton–Euler mass matrix factorization; O(N) inverse dynamics
- **5. Mass matrix -** composite rigid body inertia; forward Lyapunov equation; mass matrix decomposition; mass matrix computation; alternative inverse dynamics
- 6. Articulated body inertia Concept and definition; Riccati equation; alternative force decompositions
- 7. Mass matrix factorization and inversion spatial operator identities; Innovations factorization of the mass matrix; Inversion of the mass matrix
- **8. Recursive forward dynamics** O(N) recursive forward dynamics algorithm; including gravity and external forces; inter-body forces identity

Spatial Notation

Outline

- Cover basics
- Introduce notational conventions
- Get comfortable working with multiple rotating frames
- Introduce 6D spatial notation

Multibody Frames

- Examples of frames:
 - location of a thruster on the s/c bus
 - the motion of a pair of frames due to hinge articulation
 - the motion of the moon wrt to the earth; the earth wrt the sun etc.
- Frames have a location and orientation, i.e. a pose

Linear/Angular properties

- When working with kinematics and dynamics, we often have to work with a combination of linear and angular properties
 - position/attitude
 - linear/angular velocities
 - force/moments
 - linear/angular momentum
 - mass/inertia
- Only at the body CM are the position & angular properties mostly decoupled
- However often have to work with general, non-CM reference frames – get messy coupling

Spatial Velocities and Forces

- "spatial" notation combines linear & angular terms together to help work with general (and not just CM) frames
 - position/attitude: homogeneous transform
 - velocities: spatial velocity [w, v] 6-dimensional
 - accelerations: like-wise

7

• forces: spatial force [N, F] 6-dimensional

Not to be confused with twists/wrenches from classical kinematics theory, or with "spatial operators" coming up later

Focus on propagation relationships

Propagation relationships are building blocks for recursively computing body/node properties for articulated multibody systems

Notational conventions

The * symbol is used to denote matrix transpose

$$A^* = A^T$$

The ~ symbol denotes the cross-product matrix

$$\widetilde{l} = l^{\sim} \stackrel{\triangle}{=} \begin{pmatrix} 0 & -c & b \\ c & 0 & -a \\ -b & a & 0 \end{pmatrix} \text{ where } l \stackrel{\triangle}{=} \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

$$\widetilde{l} \stackrel{\text{Kew-symmetric}}{\operatorname{for a}}$$

$$\widetilde{l} \otimes x = \widetilde{l} x$$

Spatial Transformations Recap

Spatial notation offers <u>concise</u> & <u>consistent</u> transformation expressions for arbitrary non-CM points

rigid body transformation matrix ^C $\mathcal{V}(A,C) = \overline{\phi^*}(B,C) \ ^B\mathcal{V}(A,B)$ **Spatial velocities** $^{B}\mathfrak{f}(B) = \phi(B, C) ^{C}\mathfrak{f}(C)$ **Spatial forces** Spatial inertia $M(x) = \phi(x, y)M(y)\phi^*(x, y)$ Kinetic energy $\Re_e = \frac{1}{2} \mathcal{V}^*(x) \mathcal{M}(x) \mathcal{V}(x) = \frac{1}{2} \mathcal{V}^*(y) \mathcal{M}(y) \mathcal{V}(y)$ $\mathfrak{h}(\mathbf{x}) = \mathbf{\Phi}(\mathbf{x}, \mathbf{y}) \mathfrak{h}(\mathbf{y})$ Spatial momentum

Position vectors

Propagating Positions

Can accumulate positional displacements – after representing in the same frame.

Coordinate-free notation

Will use coordinate-free notation to reduce clutter from showing rotational transforms.

Will show rotations when needed to avoid confusion

Attitude Representations

Accumulation of Rotations

Can compute rotations by composing successive ones.

Attitude representation conventions

- There are two parallel conventions for rotations, referred to as
 - robotics and aerospace rotation conventions
 - passive and active rotation conventions
 - right and left multiplication convention
- Both are valid in their own right, but almost exactly opposite of each other
- Need to be careful when working with both simultaneously to avoid misinterpretation and incorrect use

Aerospace vs Robotics Convention

Attitude representations

- General result: minimal (3 scalar) attitude representations cannot both be global and non-singular.
 - Euler angle & Rodrigues 3-parameters are global, but singular
 - Cayley 3-parameter representations are non-singular, but not global
- Unit quaternion 4-parameter representations mostly avoid trigonometric terms and are a good choice for transformations

Some Attitude Representations

The attitude of frame B with respect to frame A can be defined as a rotation about a fixed axis

Multi-purpose attitude representations

- Unit Quaternions $^{A}\underline{q}_{B} = \begin{bmatrix} q \\ q_{0} \end{bmatrix} = \begin{bmatrix} \sin(\theta/2)n \\ \cos(\theta/2) \end{bmatrix}$
 - Great for applying *rotational* transformations across frames
- Rodrigues parameters $\mathfrak{u} \stackrel{\triangle}{=} \mathfrak{n}\theta$
 - Good 3-parameter representation for
 <u>integrating attitude rates</u>
 - though have to re-center coordinates periodically to avoid singularity

Homogeneous Transformations

Typically have to deal with both rotations and displacements (i.e. **poses**) simultaneously.

Homogeneous Transform

Combined attitude and position information is also referred to as "pose". A pose can be represented as a 4x4 homogeneous transform matrix

Jet Propulsion Laboratory California Institute of Technology

Composing homog. transforms

relative position

Propagating pose across frames

Computing overall relative pose by composing component poses (like rotations)

Jet Propulsion Laboratory nia Institute of Technology

• Frequent need to compute poses of bodies and frames with respect to each other and the inertial frame.

Composing Homog. Transforms

Claim:
$${}^{A}\mathbb{T}_{C} = {}^{A}\mathbb{T}_{B} {}^{B}\mathbb{T}_{C}$$

Verification:

$$\mathbb{F}_{\mathbb{G}} \mathbb{G}_{\mathbb{H}} = \begin{pmatrix} \mathbb{F}_{\mathcal{R}_{\mathbb{G}}} & \mathbb{F}_{\mathfrak{l}}(\mathbb{F}, \mathbb{G}) \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbb{G}_{\mathcal{R}_{\mathbb{H}}} & \mathbb{G}_{\mathfrak{l}}(\mathbb{G}, \mathbb{H}) \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \mathbb{F}_{\mathcal{R}_{\mathbb{H}}} & \mathbb{F}_{\mathfrak{l}}(\mathbb{F}, \mathbb{G}) + \mathbb{F}_{\mathfrak{l}}(\mathbb{G}, \mathbb{H}) \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \mathbb{F}_{\mathcal{R}_{\mathbb{H}}} & \mathbb{F}_{\mathfrak{l}}(\mathbb{F}, \mathbb{H}) \\ 0 & 1 \end{pmatrix} = \mathbb{F}_{\mathbb{H}}$$

Computing relative position

Claim:
$$\begin{bmatrix} {}^{A}\iota(A,C) \\ 1 \end{bmatrix} = {}^{A}\mathbb{T}_{B} \begin{bmatrix} {}^{B}\iota(B,C) \\ 1 \end{bmatrix}$$

Verification:

Follows from

$${}^{\mathrm{F}}\mathfrak{p}(\mathrm{F},\mathrm{O}) = {}^{\mathrm{F}}\mathfrak{l}(\mathrm{F},\mathrm{G}) + {}^{\mathrm{F}}\mathfrak{R}_{\mathrm{G}} {}^{\mathrm{G}}\mathfrak{p}(\mathrm{G},\mathrm{O})$$
$${}^{A}\mathbb{T}_{\mathrm{B}} = \begin{pmatrix} {}^{A}\mathfrak{R}_{\mathrm{B}} {}^{A}\mathfrak{l}(A,\mathrm{B}) \\ 0 & 1 \end{pmatrix}$$

Time Derivatives of Vectors

Time derivative of a 3-vector

- We can only differentiate coordinate representations of vector quantities
- So we need to specify which frame the coordinates are represented in , i.e. which frame we are differentiating or observing in, eg.

$$\frac{\mathbb{F}d_{\mathbb{F}} x(s)}{ds} \stackrel{\triangle}{=} \frac{d\left[\mathbb{F}x(s)\right]}{ds} = \begin{bmatrix} \frac{dx_1(s)}{ds} \\ \frac{dx_2(s)}{ds} \\ \frac{dx_3(s)}{ds} \end{bmatrix}$$

• Resulting derivative is itself a 3-vector

Time derivative representations

• The derivative in different frames are not necessarily the same

$$\frac{\mathrm{d}_{\mathbb{F}} \mathbf{x}}{\mathrm{d} \mathbf{s}} \neq \frac{\mathrm{d}_{\mathbb{G}} \mathbf{x}}{\mathrm{d} \mathbf{s}}$$

- The time derivative of a vector is itself a vector
 - and thus it can be represented in a frame other than the derivative frame

Angular velocity

 Angular velocity is defined via the time derivative property of rotations:

$$\frac{\mathrm{d}^{\mathbb{F}}\mathfrak{R}_{\mathbb{G}}}{\mathrm{d}t} = {}^{\mathbb{F}}\widetilde{\omega}(\mathbb{F},\mathbb{G}) {}^{\mathbb{F}}\mathfrak{R}_{\mathbb{G}} = {}^{\mathbb{F}}\mathfrak{R}_{\mathbb{G}} {}^{\mathbb{G}}\widetilde{\omega}(\mathbb{F},\mathbb{G})$$

If have time derivative of a vector in one frame, can we get its time derivative in a different frame?

$$\frac{d_{\mathbb{F}}x}{dt} = \frac{d^{\mathbb{F}}\mathfrak{R}_{\mathbb{G}}{}^{\mathbb{G}}x}{dt} = {}^{\mathbb{F}}\mathfrak{R}_{\mathbb{G}}\frac{d_{\mathbb{G}}x}{dt} + {}^{\mathbb{F}}\mathfrak{R}_{\mathbb{G}} {}^{\mathbb{G}}\widetilde{\omega}\left(\mathbb{F},\mathbb{G}\right){}^{\mathbb{G}}x$$
or simply
$$\frac{d_{\mathbb{F}}x}{dt} = \frac{d_{\mathbb{G}}x}{dt} + \widetilde{\omega}(\mathbb{F},\mathbb{G})x$$

The derivatives in different frames are the same only if there is no relative angular velocity between the frames.

Linear Velocities

Linear velocities

• Linear velocity is the time derivative of position vector in the initial frame:

$$v(\mathbf{x},\mathbf{y}) = \frac{\mathrm{d}_{\mathbf{x}}\mathfrak{l}(\mathbf{x},\mathbf{y})}{\mathrm{d}t}$$

• Linear velocity reversal (show)

$$v(\mathbf{y},\mathbf{x}) = -v(\mathbf{x},\mathbf{y}) + \widetilde{\omega}(\mathbf{x},\mathbf{y}) v(\mathbf{x},\mathbf{y})$$

vanishes when relative angular velocity is zero

Accumulating linear velocities

Jet Propulsion Laborator California Institute of Technolog

Spatial Velocity

Accumulating linear/angular velocities

 $\nu(A,C) = \nu(A,B) + \widetilde{\omega}(A,B) \, \iota(B,C) + \nu(B,C)$

Accumulating Spatial velocities

Spatial velocity propagation

Claim:
$$\mathcal{V}(A,C) = \phi^*(B,C) \, \mathcal{V}(A,B) + \mathcal{V}(B,C)$$

Verification:

 $\omega(A,C) = \omega(A,B) + \omega(B,C)$

$$\nu(A, C) = \nu(A, B) + \widetilde{\omega}(A, B) \ \iota(B, C) + \nu(B, C)$$
$$= -\widetilde{\iota}(B, C) \ \omega(A, B) + \nu(A, B) + \nu(B, C)$$

$$\mathcal{V} = \begin{bmatrix} \omega \\ v \end{bmatrix}$$

$$\phi^*(\mathbf{x},\mathbf{y}) = \begin{pmatrix} \mathbf{I}_3 & \mathbf{0}_3 \\ -\widetilde{\mathfrak{l}}(\mathbf{x},\mathbf{y}) & \mathbf{I}_3 \end{pmatrix}$$

Special case: Transforming spatial velocities across a rigid body

Propagating Spatial Velocities

We can use the spatial velocity propagation relationships for computing spatial velocities of bodies and frames.

Structure of $\phi(\mathbb{F},\mathbb{G})$

 We have been using the <u>coordinate free</u> representations so far.

$$\phi(\mathbb{F},\mathbb{G}) = \begin{pmatrix} \mathbf{I}_3 & \tilde{\mathfrak{l}}(\mathbb{F},\mathbb{G}) \\ \mathbf{0}_3 & \mathbf{I}_3 \\ \mathbf{0}_3 & \mathbf{I}_3 \end{pmatrix}$$

• The full, explicit form which includes rotations is:

$$\phi(\mathbb{F},\mathbb{G}) = \begin{pmatrix} I_3 & \mathbb{F}\widetilde{\mathfrak{l}}(\mathbb{F},\mathbb{G}) \\ \mathbf{0}_3 & I_3 \end{pmatrix} \begin{pmatrix} \mathbb{F}\mathfrak{R}_{\mathbb{G}} & \mathbf{0}_3 \\ \mathbf{0}_3 & \mathbb{F}\mathfrak{R}_{\mathbb{G}} \end{pmatrix}$$

Properties of $\phi(x,y)$

Jet Propulsion Laboratory California Institute of Technology

Properties are very similar to those for rotational matrices.

$$\phi(\mathbf{x}, \mathbf{x}) = \mathbf{I}_6 \qquad \qquad \textit{Identity}$$

$$\phi(x,z) = \underbrace{\phi(x,y)\phi(y,z)}_{\substack{(I,Y)\\ O \ I}} Products$$

$$\phi^{-1}(x,y) = \phi(y,x) \qquad \text{Inverse}$$
$$\begin{pmatrix} \mathbf{I} & \tilde{e}(y,x) \\ \mathbf{0} & \mathbf{I} \end{pmatrix}$$

Product rule

Claim:

$$\phi(\mathbf{x}, z) = \phi(\mathbf{x}, \mathbf{y})\phi(\mathbf{y}, z)$$

Verification:

$$\phi(x,y)\phi(y,z) = \begin{pmatrix} \overbrace{I_3 \quad \widetilde{l}(x,y)} \\ 0_3 \quad I_3 \end{pmatrix} \begin{pmatrix} \overbrace{I_3 \quad \widetilde{l}(y,z)} \\ 0_3 \quad I_3 \end{pmatrix} \\
= \begin{pmatrix} I_3 \quad \widetilde{l}(x,y) + \widetilde{l}(y,z) \\ 0_3 \quad I_3 \end{pmatrix} = \begin{pmatrix} I_3 \quad \widetilde{l}(x,z) \\ 0_3 \quad I_3 \end{pmatrix} = \phi(x,z)$$

Reversing spatial velocity

• Spatial velocity reversal (show)

$$\mathcal{V}(\mathbf{y},\mathbf{x}) = -\phi^*(\mathbf{y},\mathbf{x})\mathcal{V}(\mathbf{x},\mathbf{y})$$

 This is a generalization of linear velocity reversal seen earlier

$$\nu(\mathbf{y}, \mathbf{x}) = -\nu(\mathbf{x}, \mathbf{y}) + \widetilde{\omega}(\mathbf{x}, \mathbf{y}) \nu(\mathbf{x}, \mathbf{y})$$

Spatial Forces

Force and moments

Show force transformation

Jet Propulsion Laboratory California Institute of Technology

NASA

Claim:
$$\mathfrak{f}(A) = \varphi(A, B) \mathfrak{f}(B)$$

$$N(A) = N(B) + \tilde{l}(A, B) F(B)$$
$$F(A) = F(B)$$

$$\phi(A,B) = \left(\begin{array}{cc} I_3 & \tilde{\iota}(A,B) \\ 0 & I_3 \end{array}\right)$$

Rigid body dual relationships

Power relationship is invariant to location

- There is often a need to compute the overall spatial force on a rigid body, eg. from attached actuators
- The process is to transform each of the forces to a common point, and then sum them up as follows

Spatial Cross-Product

Spatial cross product

• Cross product for spatial vectors (6-vectors)

$$z \stackrel{\triangle}{=} \begin{bmatrix} x \\ y \end{bmatrix} \qquad \widetilde{z} \stackrel{\triangle}{=} \begin{pmatrix} \widetilde{x} & \mathbf{0}_3 \\ \widetilde{y} & \widetilde{x} \end{pmatrix}$$

$$z \otimes c \stackrel{\triangle}{=} \widetilde{z}c = \begin{pmatrix} \widetilde{x}a \\ \widetilde{y}a + \widetilde{x}b \end{pmatrix} \quad c \stackrel{\triangle}{=} \begin{bmatrix} a \\ b \end{bmatrix}$$
spatial vector
cross-product
$$\widetilde{z} \neq = 0$$

Spatial cross product identities

Cross product identities similar to 3D case

$$\begin{split} \widetilde{A}A &= 0 \\ \widetilde{A}B &= - \,\widetilde{B}A \qquad (skew\text{-symmetry}) \\ \widetilde{A}\,\widetilde{B}C + \,\widetilde{B}\,\widetilde{C}A + \,\widetilde{C}\,\widetilde{A}B &= 0 \qquad (Jacobi \ identity) \\ \widetilde{A}\,\widetilde{B} - \,\widetilde{B}\,\widetilde{A} &= \,\widetilde{\widetilde{A}B} \qquad (commutator) \end{split}$$

A R / S

Spatial cross product related \overline{z} matrix

Unlike 3D cross products

Points on a rigid body

For a pair of points x, y fixed to a rigid body

$$\mathcal{V}(\mathbf{y}) = \boldsymbol{\phi}^*(\mathbf{x}, \mathbf{y}) \ \mathcal{V}(\mathbf{x})$$

For this, the following identities are true:

$$\begin{split} \varphi^*(\mathbf{x},\mathbf{y})\,\widetilde{\mathcal{V}}(\mathbf{x}) &= \widetilde{\mathcal{V}}(\mathbf{y})\varphi^*(\mathbf{x},\mathbf{y})\\ \overline{\mathcal{V}(\mathbf{x})}\,\,\varphi(\mathbf{x},\mathbf{y}) &= \varphi(\mathbf{x},\mathbf{y})\,\overline{\mathcal{V}(\mathbf{y})} \end{split}$$

 $\phi(x, y)$ & spatial cross-products

Some identities

$$[\phi^*(x,y) X]^{\sim} = \phi^*(x,y) \widetilde{X} \phi^{-*}(x,y)$$
$$[\phi^*(x,y) X]^{\sim} \phi^*(x,y) = \phi^*(x,y) \widetilde{X}$$

Spatial Accelerations

 The spatial acceleration is the time derivative of a spatial velocity with respect to a frame H defined as

$$\alpha_{\mathrm{H}}(\mathrm{F},\mathrm{G}) \stackrel{\triangle}{=} \frac{\mathrm{d}_{\mathrm{H}}\mathrm{V}(\mathrm{F},\mathrm{G})}{\mathrm{d}\mathrm{t}}$$

- Common choices for the H frame are
 - the inertial frame I
 - the "from" frame F
 - the "to" frame G

Coriolis term expressions

•
$$\mathbf{H} = \mathbf{A}$$
 $\mathfrak{a} = \begin{bmatrix} 0 \\ \tilde{\omega}(x) [\nu(y) - \nu(x)] \end{bmatrix}$
• $\mathbf{H} = \mathbf{B}$ $\mathfrak{a} = \begin{bmatrix} \tilde{\omega}(x) \omega(x, y) \\ \tilde{\omega}(x) [\nu(y) - \nu(x) + \nu(x, y)] \end{bmatrix}$

•
$$H = C$$
 $a = \tilde{\mathcal{V}}(y)\mathcal{V}(x, y)$

Different choices for frame H only change the expression for the Coriolis term.

Propagating spatial accelerations

Can accumulate spatial accelerations across multiple frames

Spatial velocity propagation relationship $\mathcal{V}(A, C) = \phi^*(B, C) \mathcal{V}(A, B) + \mathcal{V}(B, C)$ $\alpha_{(A, C)}$ $\alpha_{(A, C)}$

В

Differentiating the velocity expression with respect to the H frame yields the following spatial acceleration propagation relationship:

Lie Group theory connections

SE3 Lie Group connections

- Rotations form the SO3 Lie group
- Homogenous transforms form the SE3 Lie group
 - Spatial velocities defined here are closely related to (but not the same as) left/right trivialization elements of the Lie algebra
 - The spatial cross product is the Lie bracket (commutator) operator
 - $\varphi^*(y,x)$ corresponds to the $\underline{\textbf{Ad}}$ adjoint transformations for the SE3 Lie group
- We mention these connections for completeness, but these will not be essential to our development
- More on these connections in book appendix

Spatial Inertia

Rigid body inertias

- Mass properties of a rigid body are characterized by
 - Scalar mass, m
 - First moment of inertia 3-vector p (vector from the body frame to the CM)
 - Second moment of inertia, 3x3 inertia matrix J
- Traditionally these terms are kept apart in the linear and angular equations of motion
 - This works well only at CM
 - Elsewhere get nasty cross-coupling terms

- Parallel axis theorem allows one to transform inertia properties from one body reference point to another
- Plain 3x3 rigid body inertia from CM inertia

$$\mathscr{J}(\mathbf{x}) = \mathscr{J}(\mathbf{C}) - \mathfrak{m}\widetilde{p}(\mathbf{x})\widetilde{p}(\mathbf{x})$$

 Inertia transformation from arbitrary point y to point x is more involved

Spatial Inertia at CM

Body kinetic energy can be defined by the linear and angular terms at the CM

$$\begin{aligned} \mathfrak{K}_{e} &= \frac{1}{2} \mathfrak{m} \mathcal{V}^{2}(\mathbb{C}) + \frac{1}{2} \omega^{*}(\mathbb{C}) \mathscr{J}(\mathbb{C}) \omega(\mathbb{C}) \\ &= \frac{1}{2} \mathcal{V}^{*}(\mathbb{C}) \begin{pmatrix} \mathscr{J}(\mathbb{C}) & \mathbf{0} \\ \mathbf{0} & \mathfrak{m} I_{3} \end{pmatrix} \mathcal{V}(\mathbb{C}) \\ &= \frac{1}{2} \mathcal{V}^{*}(\mathbb{C}) \underbrace{\mathcal{M}(\mathbb{C})} \mathcal{V}(\mathbb{C}) \\ & \\ & \\ \mathcal{M}(\mathbb{C}) \stackrel{\triangle}{=} \begin{pmatrix} \mathscr{J}(\mathbb{C}) & \mathbf{0} \\ \mathbf{0} & \mathfrak{m} I_{3} \end{pmatrix} \end{aligned}$$

0

 $\mathfrak{m}I_3$

l inertia at the center of mass (6x6 matrix)

Spatial inertia – away from CM

Kinetic energy is invariant to reference point

$$\begin{aligned} \mathfrak{K}_{\mathbf{e}} &= \frac{1}{2} \mathcal{V}^{*}(\mathbb{C}) \ \mathcal{M}(\mathbb{C}) \ \mathcal{V}(\mathbb{C}) \\ &= \frac{1}{2} \widetilde{\mathcal{V}^{*}(\mathbf{x})} \ \widehat{\Phi}(\mathbf{x}, \mathbb{C}) \ \mathcal{M}(\mathbb{C}) \ \widehat{\Phi^{*}(\mathbf{x}, \mathbb{C})} \ \mathcal{V}(\mathbf{x}) \\ &= \frac{1}{2} \mathcal{V}^{*}(\mathbf{x}) \ \mathcal{M}(\mathbf{x}) \ \mathcal{V}(\mathbf{x}) \end{aligned}$$

 $\mathcal{V}(\mathbf{x})$

Structure of the spatial inertia

The spatial inertia matrix is always symmetric and non-negative definite

Parallel axis theorem for spatial inertias

Would like to move spatial inertia from one reference point to another

Claim:
$$M(y) = \phi(y, x) M(x) \phi^*(y, x)$$

parallel axis theorem for spatial inertias

Verification: $M(y) = \phi(y, \mathbb{C}) M(\mathbb{C}) \phi^{*}(y, \mathbb{C})$ $= \phi(y, x) \phi(x, \mathbb{C}) M(\mathbb{C}) \phi^{*}(x, \mathbb{C}) \phi^{*}(y, x)$ $= \phi(y, x) M(\tilde{x}) \phi^{*}(y, x)$

using $\phi(y,\mathbb{C}) = \phi(y,x) \phi(x,\mathbb{C})$

Transforming Spatial Inertias

General way to transform spatial inertias across any pair of points on a rigid body

 Kinetic energy is invariant to reference point when working with spatial quantities:

$$\mathfrak{K}_{e} = \frac{1}{2} \mathcal{V}^{*}(\mathbf{x}) \mathcal{M}(\mathbf{x}) \mathcal{V}(\mathbf{x}) = \frac{1}{2} \mathcal{V}^{*}(\mathbf{y}) \mathcal{M}(\mathbf{y}) \mathcal{V}(\mathbf{y})$$

 This is a generalization of the well know quadratic expression for linear and angular energies at the CM

Invariance of Kinetic Energy

Claim:

$$\mathfrak{K}_{e} = \frac{1}{2} \mathcal{V}^{*}(x) \mathcal{M}(x) \mathcal{V}(x) = \frac{1}{2} \mathcal{V}^{*}(y) \mathcal{M}(y) \mathcal{V}(y)$$

Verification:

$$\begin{split} \mathfrak{K}_{e} &= \frac{1}{2} \mathcal{V}^{*}(\mathbf{y}) \ \mathcal{M}(\mathbf{y}) \ \mathcal{V}(\mathbf{y}) \\ &= \frac{1}{2} \mathcal{V}^{*}(\mathbf{x}) \ \boldsymbol{\phi}(\mathbf{x}, \mathbf{y}) \ \mathcal{M}(\mathbf{y}) \ \boldsymbol{\phi}^{*}(\mathbf{x}, \mathbf{y}) \ \mathcal{V}(\mathbf{x}) \\ &= \frac{1}{2} \mathcal{V}^{*}(\mathbf{x}) \ \mathcal{M}(\mathbf{x}) \ \mathcal{V}(\mathbf{x}) \end{split}$$

Accumulating spatial inertias

P A R AS

Often need total effective mass properties of a collection of bodies

 requires transforming all mass properties to a common point (parallel axis theorem) and then summing them up

$${}^{B}M = \sum_{i} \phi(B,i) M(i) \phi^{*}(B,i)$$
overall spatial
inertia at B
i
transform spatial
inertia to B

Spatial Momentum

Rigid body spatial momentum

About CM get standard form

$$\begin{split} \mathfrak{h}(\mathbf{C}) & \stackrel{\triangle}{=} \\ \mathfrak{s}_{patial} \\ \mathfrak{momentum} \end{array} \begin{bmatrix} \mathscr{J}(\mathbf{C}) \mathscr{W}(\mathbf{C}) \\ \mathfrak{mv}(\mathbf{C}) \\ \mathfrak{mv}(\mathbf{C}) \end{bmatrix} \xrightarrow{2.10}_{linear} \mathcal{M}(\mathbf{C}) \mathcal{V}(\mathbf{C}) \\ \mathfrak{mear} \end{split}$$

Spatial momentum about point z

$$\mathfrak{h}(z) \stackrel{ riangle}{=} \mathcal{M}(z)\mathcal{V}(z) \quad \in \mathcal{R}^6$$

· Can transform from CM to another point via

$$\mathfrak{h}(\mathbf{x}) = \mathbf{\Phi}(\mathbf{x}, \mathbb{C}) \ \mathfrak{h}(\mathbb{C})$$

Transforming Spatial Momentum

Can transform spatial momentum across any pair of points

Spatial Transformations Recap

Spatial notation offers <u>concise</u> & <u>consistent</u> transformation expressions for arbitrary non-CM points

> rigid body transformation matrix ^C $\mathcal{V}(A,C) = \phi^*(B,C) \ ^B\mathcal{V}(A,B)$ Spatial velocities $^{B}\mathfrak{f}(B) = \phi(B, C) ^{C}\mathfrak{f}(C)$ **Spatial forces** Spatial inertia $M(x) = \phi(x, y)M(y)\phi^*(x, y)$ Kinetic energy $\Re_e = \frac{1}{2} \mathcal{V}^*(x) \mathcal{M}(x) \mathcal{V}(x) = \frac{1}{2} \mathcal{V}^*(y) \mathcal{M}(y) \mathcal{V}(y)$ $\mathfrak{h}(\mathbf{x}) = \mathbf{\Phi}(\mathbf{x}, \mathbf{y}) \mathfrak{h}(\mathbf{y})$ Spatial momentum

While the expressions are compact and concise, most of them involve sparse terms, and can optimize implementations for speed.

SOA Foundations Track Topics (serial-chain rigid body systems)

- Spatial (6D) notation spatial velocities, forces, inertias; spatial cross-product, rigid body transformations & properties; parallel axis theorem
- 2. Single rigid body dynamics equations of motion about arbitrary frame using spatial notation
- **3. Serial-chain kinematics** minimal coordinate formulation, hinges, velocity recursions, Jacobians; first spatial operators; O(N) scatter and gather recursions
- **4. Serial-chain dynamics** equations of motion using spatial operators; Newton–Euler mass matrix factorization; O(N) inverse dynamics
- **5. Mass matrix -** composite rigid body inertia; forward Lyapunov equation; mass matrix decomposition; mass matrix computation; alternative inverse dynamics
- 6. Articulated body inertia Concept and definition; Riccati equation; alternative force decompositions
- **7. Mass matrix factorization and inversion** spatial operator identities; Innovations factorization of the mass matrix; Inversion of the mass matrix
- **8. Recursive forward dynamics** O(N) recursive forward dynamics algorithm; including gravity and external forces; inter-body forces identity

