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SOA Foundations Track Topics 
(serial-chain rigid body systems)

1. Spatial (6D) notation – spatial velocities, forces, inertias; spatial cross-product, rigid body 

transformations & properties; parallel axis theorem

2. Single rigid body dynamics – equations of motion about arbitrary frame using spatial 

notation

3. Serial-chain kinematics – minimal coordinate formulation, hinges, velocity recursions, 

Jacobians; first spatial operators; O(N) scatter and gather recursions

4. Serial-chain dynamics – equations of motion using spatial operators; Newton–Euler mass 

matrix factorization; O(N) inverse dynamics

5. Mass matrix - composite rigid body inertia; forward Lyapunov equation; mass matrix 

decomposition; mass matrix computation; alternative inverse dynamics

6. Articulated body inertia - Concept and definition; Riccati equation; alternative force 

decompositions

7. Mass matrix factorization and inversion – spatial operator identities; Innovations 

factorization of the mass matrix; Inversion of the mass matrix

8. Recursive forward dynamics – O(N) recursive forward dynamics algorithm; including gravity 

and external forces; inter-body forces identity

See https://dartslab.jpl.nasa.gov/References/index.php for publications and 

references on the SOA methodology.

https://dartslab.jpl.nasa.gov/References/index.php
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Spatial Notation
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Outline

• Cover basics

• Introduce notational conventions

• Get comfortable working with multiple rotating frames

• Introduce 6D spatial notation
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Multibody Frames

• Examples of frames: 
– location of a thruster on the s/c bus

– the motion of a pair of frames due to hinge articulation

– the motion of the moon wrt to the earth; the earth wrt the sun etc.

• Frames have a location and orientation, i.e. a pose
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Linear/Angular properties

• When working with kinematics and dynamics, 
we often have to work with a combination of 
linear and angular properties
• position/attitude

• linear/angular velocities

• force/moments

• linear/angular momentum

• mass/inertia

• Only at the body CM are the position & angular 
properties mostly decoupled

• However often have to work with general, non-
CM reference frames – get messy coupling

CM

ref

frame
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Spatial Velocities and Forces

• "spatial" notation – combines linear & angular terms 
together to help work with general (and not just CM) 
frames
• position/attitude: homogeneous transform

• velocities: spatial velocity [w, v] 6-dimensional

• accelerations: like-wise

• forces: spatial force [N, F] 6-dimensional

spatial velocity spatial force 

moment

force

Not to be confused with twists/wrenches from classical 

kinematics theory, or with “spatial operators” coming up later
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Focus on propagation relationships

Propagation relationships are building 

blocks for recursively computing body/node 

properties for articulated multibody systems

Frame A

Frame B

Frame C



9

Notational conventions

The * symbol is used to denote matrix transpose

Skew-symmetric 

cross-product matrix 

for a 

3-vector

The ~ symbol denotes the cross-product matrix
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Spatial Transformations Recap

Spatial notation offers concise & consistent transformation 
expressions for arbitrary non-CM points

Spatial velocities

Spatial inertia

Spatial forces

Kinetic energy

Spatial momentum

rigid body 

transformation matrix
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Position vectors
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Propagating Positions

Can accumulate positional displacements – after representing 
in the same frame.

representation 

frame
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Coordinate-free notation

Will use coordinate-free notation to reduce clutter from showing 
rotational transforms.

• Will show rotations when needed to avoid confusion

coordinate-free

notation
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Attitude Representations
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Accumulation of Rotations

Can compute rotations by composing successive ones.

indices must match 

when composing

rotation
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Attitude representation conventions

• There are two parallel conventions for rotations, referred to 
as

• robotics and aerospace rotation conventions

• passive and active rotation conventions 

• right and left multiplication convention

• Both are valid in their own right, but almost exactly 
opposite of each other

• Need to be careful when working with both simultaneously 
to avoid misinterpretation and incorrect use
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Aerospace vs Robotics Convention

our 

convention
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Attitude representations

• General result: minimal (3 scalar) attitude 
representations cannot both be global and non-singular. 
• Euler angle & Rodrigues 3-parameters are global, but 

singular

• Cayley 3-parameter representations are non-singular, but not 
global

• Unit quaternion 4-parameter representations mostly 
avoid trigonometric terms and are a good choice for 
transformations
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Some Attitude Representations

The attitude of frame B with respect to frame A can be defined as a rotation 
about a fixed axis

(exponential formula)

(angle/axis)

(unit quaternion)

Rodrigues parameters

axis & angle 

of rotation
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Multi-purpose attitude representations

• Unit Quaternions 

• Great for applying rotational 

transformations across frames

• Rodrigues parameters

• Good 3-parameter representation for 

integrating attitude rates

• though have to re-center coordinates 

periodically to avoid singularity
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Homogeneous Transformations
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Working with both position/rotations

Typically have to deal with both rotations and displacements (i.e. poses) 
simultaneously. 
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Homogeneous Transform

Combined attitude and position information is also referred to as 
“pose”. A pose can be represented as a 4x4 homogeneous 
transform matrix

homogeneous 

transform

Inverse:
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inverse

Claim:

Verification:
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Propagating pose across frames

Computing overall relative pose by composing component 
poses (like rotations)

Composing homog. transforms relative position

Propagates positions and 

rotations simultaneously 
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Propagating Poses

• Frequent need to compute poses of bodies and frames with respect to 
each other and the inertial frame.

constant
constant

variable
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Composing Homog. Transforms

Claim:

Verification:
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Computing relative position

Claim:

Verification:

Follows from
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Time Derivatives of Vectors
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Time derivative of a 3-vector

• We can only differentiate coordinate 

representations of vector quantities

• So we need to specify which frame the 

coordinates are represented in , i.e. which 

frame we are differentiating or observing in, eg.

• Resulting derivative is itself a 3-vector
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Time derivative representations

• The derivative in different frames are not necessarily 

the same

• The time derivative of a vector is itself a vector

• and thus it can be represented in a frame other 

than the derivative frame

representation 

frame

derivative 

frame
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Angular velocity

• Angular velocity is defined via the time derivative property 

of rotations:
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Relating different time derivatives

If have time derivative of a vector in one frame, can 

we get its time derivative in a different frame?

or simply

The derivatives in different frames are the same only if 

there is no relative angular velocity between the frames.
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Linear Velocities
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Linear velocities

• Linear velocity is the time derivative of 

position vector in the initial frame:

• Linear velocity reversal  (show)

vanishes when relative angular 

velocity is zero
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Accumulating linear velocities

Can accumulate linear 
velocities across multiple 
frames

Example: A is inertial 

frame, and want inertial 

linear velocity of C given 

velocity of B, and C wrt

B (eg. hinged bodies)

Inertial 

frame
hinge 



37

Spatial Velocity
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Accumulating linear/angular velocities

Accumulating both linear 
and angular velocities 
across multiple frames
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Accumulating Spatial velocities

Can accumulate spatial velocities across multiple frames

spatial velocity (6D) 

rigid body transformation matrix (6x6) 

spatial velocity 

propagation 

Uses components of the T(B,C)

homogeneous transform
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Spatial velocity propagation

Claim:

Verification:
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Special case: Transforming spatial velocities across a rigid body

Simple way to transform spatial 
velocities across any pair of 
points on a rigid body
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Propagating Spatial Velocities

We can use the spatial velocity propagation relationships for computing 
spatial velocities of bodies and frames.

constant
constant

variable
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Structure of 

• We have been using the coordinate free representations 

so far. 

• The full, explicit form which includes rotations is:

identityzero

skew-symmetric
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Properties of 

Inverse

Products

Identity

Properties are very similar to those for rotational matrices.
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Product rule

Claim:

Verification:
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Reversing spatial velocity

• Spatial velocity reversal  (show)

• This is a generalization of linear velocity reversal seen 

earlier
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Spatial Forces
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Force and moments

Can transform forces and 
moments across points on a 
rigid body

spatial force 

forces

moments
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Show force transformation

Claim:

Verification:
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Rigid body dual relationships

Power relationship is invariant to location 

Dual transformations for 

spatial velocities and forces

Omit inertial frame for 

notational short hand when 

redundant
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Accumulating Spatial Forces

• There is often a need to compute the overall spatial force on 
a rigid body, eg. from attached actuators

• The process is to transform each of the forces to a common 
point, and then sum them up as follows  

transform spatial

force to B

overall spatial

force at B



52

Spatial Cross-Product
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Spatial cross product

• Cross product for spatial vectors (6-vectors)

spatial vector 

cross-product
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Spatial cross product identities

• Cross product identities similar to 3D case
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Spatial cross product related     matrix

• Unlike 3D cross products

• Define
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Points on a rigid body

For a pair of points x, y fixed to a rigid body

For this, the following identities are true:
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& spatial cross-products

• Some identities
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Spatial Accelerations
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Spatial accelerations

• The spatial acceleration is the time 

derivative of a spatial velocity with respect 

to a frame H defined as

• Common choices for the H frame are 

• the inertial frame I

• the “from” frame F

• the “to” frame G
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Coriolis term expressions

• H = A

• H = B

• H = C

Different choices for frame H only change the expression 

for the Coriolis term.
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Propagating spatial accelerations 

Can accumulate spatial 
accelerations across multiple frames

Spatial velocity propagation relationship  

Differentiating the velocity expression with respect to the H frame yields 

the following spatial acceleration propagation relationship:  

Extra Coriolis term “a”
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Lie Group theory connections
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SE3 Lie Group connections

• Rotations form the SO3 Lie group

• Homogenous transforms form the SE3 Lie group
• Spatial velocities defined here are closely related to (but not the 

same as) left/right trivialization elements  of the Lie algebra

• The spatial cross product is the Lie bracket (commutator) 
operator

• corresponds to the Ad adjoint transformations for the 
SE3 Lie group

• We mention these connections for completeness, but these 
will not be essential to our development

• More on these connections in book appendix  
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Spatial Inertia
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Rigid body inertias

• Mass properties of a rigid body are characterized by 
• Scalar mass, m

• First moment of inertia 3-vector p (vector from the body 
frame to the CM)

• Second moment of inertia, 3x3 inertia matrix J

• Traditionally these terms are kept apart in the linear 
and angular equations of motion
• This works well only at CM

• Elsewhere get nasty cross-coupling terms
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Parallel axis methods

• Parallel axis theorem allows one to transform inertia 
properties from one body reference point to another

• Plain 3x3 rigid body inertia from CM inertia

• Inertia transformation from arbitrary point y to point x 
is more involved
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Spatial Inertia at CM

Body kinetic energy can be defined by the linear and angular terms at the CM 

spatial inertia at the

center of mass

(6x6 matrix)

linear angular
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Spatial inertia – away from CM

Kinetic energy is invariant to reference point

spatial inertia at 

an arbitrary point

(6x6 matrix)

rigid body transf.

of spatial velocity
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Structure of the spatial inertia

first moment of 

inertia 

parallel axis theorem 

for rigid body inertias 

mass

The spatial inertia matrix is always symmetric and non-negative definite
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Parallel axis theorem for spatial inertias

Claim:

Verification:

using

Would like to move spatial inertia from one reference point to another

parallel axis theorem for spatial inertias 
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Transforming Spatial Inertias

General way to transform spatial inertias across any pair of points on a rigid body

Parallel axis theorem for spatial 

inertias does not depend on CM. 



72

Rigid Body Kinetic Energy

• Kinetic energy is invariant to reference point when 
working with spatial quantities: 

• This is a generalization of the well know quadratic 
expression for linear and angular energies at the 
CM
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Invariance of Kinetic Energy

Claim:

Verification:
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Accumulating spatial inertias

Often need total effective mass properties of 
a collection of bodies

• requires transforming all mass properties 
to a common point (parallel axis theorem) 
and then summing them up

transform spatial

inertia to B

overall spatial

inertia at B
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Spatial Momentum
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Rigid body spatial momentum

• About CM get standard form 

• Spatial momentum about point z

• Can transform from CM to another point via

spatial 

momentum

angular

linear
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Transforming Spatial Momentum

Can transform spatial momentum 
across any pair of points

(similar to transformation 

for spatial forces)
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Spatial Transformations Recap

Spatial notation offers concise & consistent 
transformation expressions for arbitrary non-CM points

Spatial velocities

Spatial inertia

Spatial forces

Kinetic energy

Spatial momentum

rigid body 

transformation matrix
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Computational optimization

While the expressions are compact and concise, 
most of them involve sparse terms, and can 
optimize implementations for speed.
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SOA Foundations Track Topics 
(serial-chain rigid body systems)

1. Spatial (6D) notation – spatial velocities, forces, inertias; spatial cross-product, rigid 

body transformations & properties; parallel axis theorem

2. Single rigid body dynamics – equations of motion about arbitrary frame using spatial 

notation

3. Serial-chain kinematics – minimal coordinate formulation, hinges, velocity 

recursions, Jacobians; first spatial operators; O(N) scatter and gather recursions

4. Serial-chain dynamics – equations of motion using spatial operators; Newton–Euler 

mass matrix factorization; O(N) inverse dynamics

5. Mass matrix - composite rigid body inertia; forward Lyapunov equation; mass matrix 

decomposition; mass matrix computation; alternative inverse dynamics

6. Articulated body inertia - Concept and definition; Riccati equation; alternative force 

decompositions

7. Mass matrix factorization and inversion – spatial operator identities; Innovations 

factorization of the mass matrix; Inversion of the mass matrix

8. Recursive forward dynamics – O(N) recursive forward dynamics algorithm; including 

gravity and external forces; inter-body forces identity


