Corrections to J. of the Ast. Sc.

 paper [1]

 paper [1]}

Abhi Jain (jain@jpl.nasa.gov)
September 27, 2009

This note describes corrections to the [1] paper. The correct form of Eq. 41 in the paper is as follows:

$$
\begin{equation*}
H^{*} D^{-1} H=\Upsilon-\operatorname{diag}\left\{\mathcal{E}_{\psi}^{*} \Upsilon \mathcal{E}_{\psi}\right\} \tag{41}
\end{equation*}
$$

The paper is missing the diag term. The solution Υ is a block-diagonal matrix whose block-diagonal elements are computed recursively as described in the algorithm below Eq (42) in the paper.
$\mathrm{Eq}(42)$ in the paper should include the additional R matrix as follows:

$$
\begin{equation*}
\Omega=\Upsilon+\tilde{\psi}^{*} \Upsilon+\Upsilon \tilde{\psi}+R \tag{42}
\end{equation*}
$$

where the additional matrix R is given by

$$
R \triangleq \sum_{i \nsucc j, j \nsucc i, k=\wp(i, j)} e_{i} \psi^{*}(k, i) \Upsilon(k) \psi(k, j) e_{j}^{*}
$$

In the above e_{i} denotes a block-column vector with all zero entries except for the $i^{\text {th }}$ block which is an identity matrix. R has non-zero (i, j) entry only when neither i nor j is the ancestor of the other. $\wp(i, j)$ denotes the nearest common ancestor for the $i^{\text {th }}$ and $j^{\text {th }}$ bodies, while $\wp(k)$ denotes the immediate parent of the $k^{\text {th }}$ body.

The algorithm for the elements of Ω in the paper does not include the elements of R. The correct algorithm can be summarized as follows:

$$
\Omega(i, j)= \begin{cases}\Upsilon(i) & \text { for } i=j \tag{A}\\ \psi^{*}(k, i) \Omega^{*}(j, k) & \text { for } i \prec k \preceq j, \quad k=\wp(i) \\ \Omega(i, k) \psi(k, j) & \text { for } i \succeq k \succ j, \quad k=\wp(j) \\ \psi^{*}(\wp(i), i) \Omega(\wp(i), \wp(j)) \psi(\wp(j), j) & \text { for } i \nsucc j, j \nsucc i, \quad k=\wp(i, j)\end{cases}
$$

The paper is missing the last of the four entries above. The overall algorithm consists of computing the diagonal $\Upsilon(k)$ matrices in a base to tips recursion followed by recursions that start with the diagonal terms to compute the off-diagonal rows and columns terms.

A summary of the proof is as follows. First note that \mathcal{E}_{ψ} and ψ can be expressed as

$$
\mathcal{E}_{\psi}=\sum_{k} e_{\wp(k)} \psi(\wp(k), k) e_{k}^{*}, \quad \psi=\sum_{l \succeq j} e_{l} \psi(l, j) e_{j}^{*}
$$

Thus

$$
\begin{aligned}
\operatorname{diag}\left\{\mathcal{E}_{\psi}^{*} \Upsilon \mathcal{E}_{\psi}\right\} & =\operatorname{diag}\left\{\left\{\sum_{j} e_{j} \psi^{*}(\wp(j), j) e_{\wp(j)}^{*}\right\} \Upsilon\left\{\sum_{k} e_{\wp(k)} \psi(\wp(k), k) e_{k}^{*}\right\}\right\} \\
& =\operatorname{diag}\left\{\sum_{j, k, \wp(j)=\wp(k)} e_{j} \psi^{*}(\wp(j), j) \Upsilon(\wp(j)) \psi(\wp(k), k) e_{k}^{*}\right\} \\
& =\sum_{j} e_{j} \psi^{*}(\wp(j), j) \Upsilon(\wp(j)) \psi(\wp(j), j) e_{j}^{*}
\end{aligned}
$$

At the component level this is equivalent to

$$
H^{*}(k) D^{-1}(k) H(k)=\Upsilon(k)-\psi^{*}(\wp(j), j) \Upsilon(\wp(j)) \psi(\wp(j), j)
$$

from which Eq. (41) follows.
Now let us look at the elements of $\Omega=\psi^{*} H^{*} D^{-1} H \psi$.

$$
\begin{aligned}
\Omega & =\left\{\sum_{m \succeq i} e_{i} \psi^{*}(m, i) e_{m}^{*}\right\} H^{*} D^{-1} H\left\{\sum_{l \succeq j} e_{l} \psi(l, j) e_{j}^{*}\right\} \\
& =\sum_{m \succeq i, j} e_{i} \psi^{*}(m, i) H^{*}(m) D^{-1}(m) H(m) \psi(m, j) e_{j}^{*}
\end{aligned}
$$

Hence,

$$
\Omega(i, j)=\sum_{m \succeq i, j} \psi^{*}(m, i) H^{*}(m) D^{-1}(m) H(m) \psi(m, j)
$$

The expressions in Eq. (A) are a recursive form of the above expression for $\Omega(i, j)$.

References

[1] G. Rodriguez, A. Jain, and K. Kreutz-Delgado, "Spatial Operator Algebra for Multibody System Dynamics," Journal of the Astronautical Sciences, vol. 40, pp. 27-50, Jan.-March 1992.

