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Abstract: EELS-DARTS is a simulator designed for autonomy development and analysis of large
degree of freedom snake-like robots for space exploration. A detailed description of the EELS-
DARTS simulator design is presented. This includes the versatile underlying multibody dynamics
representation used to model a variety of distinct snake robot configurations as well as an anisotropic
friction model for describing screw–ice interaction. Additional simulation components such as
graphics, importable terrain, joint controllers, and perception are discussed. Methods for setting
up and running simulations are discussed, including how a snake robot’s autonomy stack closes
the commands and information loop with the simulation via ROS. Multiple use cases are described
to illustrate how the simulation is used to aid and inform robot design, autonomy development,
and field test use throughout the project’s life cycle. A validation analysis of the screw–ice contact
model is performed for the surface mobility case. Lastly, an overview of simulation use for planning
operations during a recent field test to the Athabasca Glacier in Canada is discussed.

Keywords: dynamics; simulation; robotics; exploration; rovers; mobility; contact; graphics; perception;
DARTS; NASA JPL

1. Introduction

Exobiology Extant Life Surveyor (EELS) is a large degree of freedom (DOF) snake-like
robot in development at the Jet Propulsion Laboratory (JPL) for the exploration of icy
ocean worlds such as Enceladus [1–3]. Such environments offer limited communication
infrastructure and highly unstructured terrains with uncertain properties. Because of this,
EELS is designed to be largely autonomous without the need for extensive human operator
feedback. EELS features a versatile autonomy stack, NEO, that allows the robot to sense
its environment, perform high-level risk assessment and planning, and employ varied
locomotion gaits [4–6]. EELS employs bend and twist actuators to alter its shape, enabling
so-called shape-based locomotion gaits [7,8]. The robot also features active skin actuation in
the form of rotating screws that allows mobility through tight channels where shape-based
gaits are not available and over unconsolidated materials such as sand or snow [9–12].
Unlike traditional wheeled rover systems, EELS is designed to excel at moving not only
in surface environments but subsurface environments as well. In the latter case, the robot
can manipulate its many degrees of freedom to fit itself in between the walls of canyons,
crevices, tubes, and so forth. The robot can then press itself against the walls and dig its
screws into the icy material in order to keep itself from falling and traverse up or down.
This article follows the content of a conference paper that was presented previously [13].

Designing and testing a robot that is intended to operate in inherently uncertain
environments presents unique challenges. In many cases, the desired environment is
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difficult to recreate experimentally, for example, low gravity environments or icy channels
with complex shapes. Moreover, various environment variables such as terramechanics
properties, terrain geometry, or lighting may simply be unknown or known with large
degrees of uncertainty. Such challenges motivate the development of computer simulations
to work alongside experiments in the development of snake robots [14–18]. A sufficiently
versatile and high-fidelity physics simulation can empower engineers to rapidly test a
variety of operational scenarios. Gravity and terrain can easily be modified in simulation.
Unknown variables can be appropriately dispersed and fed into physics-based models. A
new robot design can be realized in simulation by changing model properties. Moreover,
while hardware is limited to serial tests one after another, simulations can be used by many
engineers in parallel at once. Thus, while hardware testing is very important, a capable
simulator can be a valuable asset in complimenting and accelerating the research toward
the development of such robots.

In this paper, we present EELS-DARTS, a versatile dynamics simulator used by the
EELS project as a closed-loop autonomy and perception algorithms test bed. Figure 1
shows a high-level overview of how the EELS autonomy stack closes the loop around the
EELS-DARTS simulator. The autonomy stack has been developed to provide extensive
controls [10], perception [6], and risk-aware task and motion planning [5] capabilities.
In this paper, we focus on the development and features of the EELS-DARTS simulator
(highlighted in green in Figure 1) and how it is used by the autonomy team. A core feature
of the EELS-DARTS simulator is the ability to support the project in rapidly prototyping
new robot designs and traversal scenarios. It offers the ability to ingest a standard robot
description in the Universal Robot Description Format (URDF) and optimizes the multibody
structure as needed. The simulator is designed to be a drop-in replacement for actual EELS
hardware. A ROS [19] interface publishes and receives messages in the form of sensor
data, actuation commands, and simulation actions to close the loop with the EELS onboard
software in place of the actual hardware. This simulation analogue empowers engineers
to rapidly prototype autonomy stack features and shake out issues before any code is
deployed on the hardware. A wide variety of environments can be simulated in EELS-
DARTS. Synthetic terrains can be used for both surface and subsurface robot traversal
scenarios. Meshes from field-test scans of glaciers can be imported. Placement tools such
as robot tethering and inverse-kinematic-based placement algorithms are available to assist
in initializing the large number of degrees of freedom for arbitrary terrain shapes.

Figure 1. High-level diagram showing how the EELS autonomy stack closes the loop around the EELS-
DARTS simulator (this work). An operator panel further provides useful actions and information for
simulation operators.
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EELS-DARTS builds upon the JPL Dynamics Algorithms for Real-Time Simulation
(DARTS) framework, which is a general, multi-mission, flexible multibody dynamics en-
gine [20]. The DARTS dynamics engine uses a minimal coordinates multibody representa-
tion and the Spatial Operator Algebra (SOA) methodology for low-cost recursive algorithms
to solve the multibody dynamics [21]. DARTS has been in active development since the early
1990s and has been used for a variety of NASA and industry projects for ground vehicles,
autonomous robots, rotorcraft, spacecraft, entry descent and landing (EDL), atmospheric
balloons (aerobots), molecular dynamics, and other applications [22]. For a robot-level
simulation, EELS-DARTS further uses the so-called DARTS Dshell framework [23], which is
a collection of middleware that is used in concert with DARTS to build up fully-featured
simulations for a particular application with relevant component models (actuators, sensors,
avionics, etc.), terrains [24,25], and graphics [26]. A benefit of the Dshell framework is the
ability to reuse tried and tested components that have been developed over decades of JPL
projects without needing to start from scratch. EELS-DARTS is a novel DARTS/Dshell-based
simulation with a combination of new and existing capabilities that have been adapted for
snake robot applications. Our contributions in this work include new robot multibody mod-
els (Section 2.1.2), screw contact models (Section 2.2.2), terrains (Section 2.2.1), closed-loop
interfaces (Section 3.2), and other features that will be discussed in detail in this paper.

The DARTS/Dshell framework provides a unique capability to the EELS project as a
closed-loop autonomy testbed. It offers an extensive catalog of pre-existing capabilities in
terrain modeling, GPU-based perception, and actuator models and can be readily extended
with new capabilities through its C++ or Python 3 API. This capability was crucial for the
project to provide a simulation framework that could expand and adapt with the project’s
needs. While other existing simulation tools address some aspects, none provide all of
the simulation capabilities required by the EELS project. For example, while Adams [27]
is widely used in engineering applications for rigid/flexible body physics simulation,
it is not well suited for closed-loop controls and perception use. Recently, the NVIDIA
Isaac Lab toolkit [28] has demonstrated impressive GPU-accelerated rendering and sensor
modeling capabilities as well as a modular and user-friendly approach to scene creation.
However, the underlying PhysX physics engine does not provide an anisotropic friction
model amenable to screw–terrain interaction modeling for mobility studies. MuJoCo [29] is
a recently open-sourced multibody physics engine that offers a fast, recursive dynamics
formulation and anisotropic contact models but offers somewhat limited options to simulate
more sophisticated screw–terrain interactions. Gazebo [30] is another popular open-source
simulation framework that has seen heavy use in research and academia. However, similar
to MuJoCo, it lacks the ability to rigorously simulate screw–terrain interaction.

The structure of the remainder of this paper is as follows. In Section 2, we discuss the
unique design of EELS-DARTS as a snake robot simulator. This includes a discussion of the
versatile multibody representation to support various distinct snake robot designs. We also
discuss simulation components such as importable terrain, screw–ice contact models, joint
controllers, force-torque sensors, perception models, and robot placement. In Section 3,
we discuss the user interface and the ROS autonomy stack interface. Section 4 describes
simulation results. In Section 4.1, we show simulation usage examples from throughout
the design life cycle of the project. In Section 4.2, we perform a quantitative comparison
of simulation predictions against experimental results for a surface traversal experiment
on hard, synthetic ice in the lab. We also discuss the limitations of the present screw–ice
contact model. Section 4.3 provides a discussion of EELS-DARTS use throughout field
test planning during a recent trip to the Athabasca Glacier in Canada [31]. We end with
concluding thoughts and a discussion of future work.

2. Simulator Design

In this section we discuss the underlying design of the EELS-DARTS simulator with
an emphasis on aspects we believe to be unique or challenging with regards to simulating
large-scale snake robots on rough terrain.
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2.1. The DARTS Multibody

DARTS uses a minimal coordinates approach to represent the multibody system. Each
body is connected to a parent via a joint. The joint type (revolute, prismatic, ball, etc.)
determines the number of generalized position and velocity coordinates for that body. This
is in contrast to an absolute coordinates approach that relies on bilateral constraints for
joints. DARTS uses the Spatial Operator Algebra (SOA) methodology’s fast recursive O(N)
algorithms to solve the multibody dynamics [21]. While these algorithms are often applied
to a tree multibody structure (where each body has exactly one parent), loop topologies and
gear constraints (see Section 2.1.3) are readily supported by using the constraint embedding
method [32]. To fully specify the multibody model, the mass properties of each body, such
as the mass, location of the center of mass frame, and inertia tensor, are required. Currently
the robots modeled in the EELS-DARTS simulator use rigid bodies connected via revolute
joints, however, the DARTS framework also natively supports flexible bodies should the
need arise in the future [33,34]. Further discussion of the minimal coordinates formulation
is out of the scope of this paper; however, interested readers are referred to [21,34].

2.1.1. URDF Representation

The EELS-DARTS simulator can ingest Universal Robotic Description Format (URDF)
files, which are XML-based robot multibody definition files widely used by the robotics
community. DARTS uses a URDF parser to convert these files into its internal multibody
representation. Exposing a URDF interface allows rapid iteration by decoupling robot
design evolution and the simulator development. A robotics engineer can iterate upon
a robot design using tools they are accustomed to without needing to worry about the
DARTS-specific implementation details of the multibody.

2.1.2. EELS Robot Models

EELS snake robots are generally configured as a repeating series of modules. Each
module is connected to the next one via a revolute joint dubbed a bend joint. Some EELS
designs also contain revolute joints in the middle of a module that allows rotation about
the axial direction of the robot, dubbed twist joints. The bend and twist joints allow the
robot to adjust its shape and enable so-called shape-based locomotion gaits. Each module
contains zero, one, or two screws, depending on the robot design. These screws rotate to
provide so-called active skin actuation. Figure 2 shows a typical EELS robot design with
two screws per module and a perception sensor head as the last module.

Figure 2. A typical EELS robot configuration consisting of a repeating set of modules connected by
bend joints. Screws are included for active skin actuation. A perception sensor suite consisting of an
IMU, a lidar, and stereo cameras is attached at the head.

Each new robot design is delivered to EELS-DARTS simulation developers as a URDF
file, which is then processed into a DARTS multibody. Once the robot design has been
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processed, it is available to run in simulation. The following robot designs are currently
implemented in EELS-DARTS:

• EELS—An early EELS design concept with two counter-rotating screws per module.
See Figure 3a.

• EELS 1.0, alternating—Version 1.0 EELS hardware. A robot built with 10 modules and
an optional perception head. Used for surface traversal and perception experiments.
The alternating variant has two counter-rotating screws per module. See Figure 3b.

• EELS 1.0, front only—The “front only” variant removed the rear screw for each module
resulting in one screw per module. See Figure 3c.

• EELS 1.5—Version 1.5 EELS hardware. A low-cost EELS robot built with off-the-shelf
components. Designed exclusively for subsurface experiments, EELS 1.5 features a
cross bar in the middle of the robot with an avionics box. See Figure 3d.

• Mini EELS 1.0—Smaller, low-cost robot with only bend joints and no screws, suitable
for tasks such as climbing up small pipes. Primarily used as a test bed for reinforcement
learning-based locomotion gaits. See Figure 3e.

Figure 3. Various distinct EELS robot designs simulated in the EELS-DARTS simulator. (a) A
preliminary EELS conceptual design with capped head. (b) EELS 1.0 configuration with two counter-
rotating screws per module and perception head. (c) EELS 1.0 configuration with one screw per
module. (d) EELS 1.5 robot model with cross bar and avionics box, designed for subsurface traversals
up and down between channel walls. (e) Mini EELS 1.0 robot model.

2.1.3. Constraint Embedding for Counter-Rotating Screws

Some EELS robots are built with counter-rotating screws achieved through hardware
transmission coupling. Counter-rotating screws naturally always come in pairs and are
referred to as front and rear screws. As previously mentioned, the DARTS framework
readily supports constraint embedding [32]. The mechanical coupling constraint between
the counter-rotating screws is enforced using DARTS’ constraint-embedding technique [32].
As a result, the original two degrees of freedom (DOF) are reduced to one DOF and a
counter-rotating constraint. The constraint embedding approach enables the use of the O(N)
low-cost minimal coordinate dynamics algorithms even in the presence of such constraints.

2.1.4. Multibody Optimization

Though DARTS uses the recursive O(N) algorithms that arise from using a minimal
coordinates approach, the EELS robot multibody can still be relatively large. An EELS
robot with ten modules—each module possessing one bend joint, one twist joint, and one
screw—has thirty-six DOF (three revolute joints per module plus six free DOFs at the tail).
Moreover, robots described by URDFs can contain mass-less links with locked joints for
specific locations on a particular body, for example, camera sensor frames and control
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frames. For the EELS project, the number of such mass-less links can be large, on the same
order of magnitude as the number of actual bodies. The DARTS solver implements an
optional multibody optimization step which prunes away such mass-less bodies from the
multibody tree and replaces them with simple frames to allow them to reduce the dynamics
calculations while still maintaining the frame information. This multibody optimization
step also combines bodies that are locked together. This capability allows using the raw
robot mass properties followed by optimizing the internal multibody model for maximizing
the efficiency in the dynamics calculations. These multibody optimizations led to significant
run-time performance gains when simulating such large-DOF snake robots.

2.1.5. Configuring the Robot Definition at Launch Time

The typical workflow for launching the simulator involves selecting a robot from
among a set of pre-processed robot models (EELS 1.0, EELS 1.5, etc.). The simulator does
provide a number of ways to reasonably modify the existing robot models at launch time.
For example, a user may wish to run with the EELS 1.0 robot but change the number of
modules from 10 to 4. To accomplish this, the user may pass this option to the simulation
via the command line interface (described in detail in Section 3.1). The simulation internally
uses a parameterized representation of the multibody model based on the repeating nature
of the EELS modules, which allows the specification of the number of modules from the
command line. Thus, a robot model with four or ten modules is easily obtained.

The simulator also provides the option to pass in a new URDF file to process at launch
time, provided it is sufficiently similar to an existing robot model. This is to ensure that
previously defined conventions for the design and structure of the multibody are not
accidentally violated. This functionality is intended to allow parameter-level changes such
as mass properties, joint positions, joint angles, meshes, and so on. For example, consider
a scenario where an autonomy engineer runs an EELS-DARTS simulation and then runs
the subsequent experiment on hardware. Upon performing this, the engineer notices that
the URDF joint axes are flipped from what they are seeing on hardware. Applying this
correction does not require changes to the simulator, and instead can be performed by
simply specifying the corrected URDF for the simulator. A permanent change can be folded
into the simulator at a later stage. Such flexibility, however, requires the corrected URDF to
be structurally similar to the baseline model within the simulator.

2.2. Component Models

In addition to the multibody dynamics, the overall robot simulator includes models
for actuator devices and sensors that interact with robot dynamics. Joint controllers, force-
torque sensors, inertial sensors, cameras, and lidars are all examples of components that
comprise an EELS robot and need to be represented by a mathematical model that is of
sufficient fidelity to meet the closed-loop needs of the project. There are also models for
the interaction between the EELS robot and the environment it is operating in. We use the
DARTS Shell (Dshell) simulation framework [23] for developing component models for
these and integrating them into a dataflow for the overall simulation. We discuss each of
these Dshell component models in this section, along with models for collision detection,
screw–terrain interaction, and robot initialization.

A key aspect of the DARTS design philosophy is model and code reuse across multiple
projects whenever possible. For instance, the camera models used by the EELS-DARTS simula-
tor were previously developed, used, and validated by previous projects [26]. Likewise, the
screw–ice contact model written for EELS will be available to future projects that might need it.

2.2.1. Terrain

A key design feature of the EELS robot is the ability to operate in a wide variety of
environments and scenarios. The environment types used for EELS scenarios are surface
and subsurface. Surface scenarios involve the robot traversing across the surface of rough
terrain using either screw-based or shape-based locomotion. Subsurface scenarios involve
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the robot operating inside a channel, vent, crevasse, or similar enclosed environment,
requiring the robot to hold itself and resist gravity by using its shape actuators to push
against the enclosing walls. Subsurface scenarios can also involve vertical traversal using
the screw actuators. A real-world mission scenario will involve a combination of both
surface and subsurface segments.

The varied scenarios that EELS can operate in necessitate a flexible interface for speci-
fying and loading terrain data in the EELS-DARTS simulator. EELS-DARTS leverages the
broad capabilities and terrain representations available in the DARTS SimScape middle-
ware [24,25]. An important modeling need is collision detection and contact modeling for
the robot/terrain interaction. This requires an interface to query contact location, penetra-
tion depth, and contact normal for a desired (x, y, z) location. Figure 4a shows an example
of a simple subsurface environment created by importing a primitive cylinder tube with
a user-defined radius. Figure 4b shows a surface environment created by importing a
Digital Elevation Model (DEM) terrain using SimScape. DEMs in SimScape are serialized
and stored in a format that is easily accessible at run-time and portable across projects.
For example, once generated and saved in a store, a Mars DEM developed for a rover
mission can be used by other projects later on. There are a wide variety of planetary and
synthetic DEMs to choose from. Figure 4c shows an example of a user-created mesh that
has been imported as a terrain. Users can create a mesh using any 3D modeling software of
their choice and then import it into EELS-DARTS. In this case, a parallel wall subsurface
environment was imported. Finally, Figure 4d shows an example of a mesh that has been
created from lidar scans of a channel in a glacier in Athabasca, Canada. Such scans obtained
by the EELS field test team can be converted into a mesh and imported into EELS-DARTS.

Figure 4. Examples of different terrains imported into EELS-DARTS for a mix of surface and
subsurface traversal scenarios: (a) Shows a simple hollow cylinder used to simulate a subsurface
vent environment. (b) Shows a surface DEM topography. (c) Shows an example of a parallel-wall
subsurface mesh that was created by a user in a 3D modeling software and then imported into
EELS-DARTS. (d) Shows a field test scan of a glacier channel from the Athabasca Glacier in Canada
imported into EELS-DARTS.

2.2.2. Collision Detection and Contact Models

Modeling contact forces can generally be split into two parts: (1) Collision detection
to determine contact points between simulation objects; (2) Computation of contact forces
at those locations. Collision detection also gathers information on the collision—depth of
penetration, relative velocities between the two colliding objects, etc.—that will be used to
calculate the contact forces. The second step uses information gathered in the first step to
actually compute the contact forces.

EELS-DARTS offers a choice between distinct back-ends to handle collision detection.
Both back ends make use of the open-source Bullet library [35]. One back-end uses convex-
hulls representations of the meshes, shown in Figure 5. The other uses a signed distance
field (SDF) representation of the terrain and a hand-selected set of possible contact points
on the screws to enable faster collision detection between the screws and the terrain. This
second method ignores body-to-body collisions and instead leverages fast SDF queries for
body-to-terrain collisions. Querying collisions in this manner results in significant run-time
performance improvements at the cost of some reduction in simulation fidelity.
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Figure 5. Original screw collision mesh (left) and convex hull representation of collision mesh (right).
Each convex hull in the right mesh is shown using a different color. The convex hull representations
of collision meshes are used by one of the Bullet collision back-ends to perform collision detection.
The convex hull decomposition process is again another instance where we can trade off accuracy for
performance, e.g., reducing the number of convex hulls will improve performance but may cause the
discrepancy between the convex hull representation of the collision mesh and the actual mesh to be larger.

At a high level, EELS-DARTS needs to simulate contact forces that result from the
interaction of screws with the terrain. In reality, the terrain deforms as a result of these
interactions. However, simulating terrain deformation is a computationally intensive
process. A trade-off is made to simulate the contact forces on the EELS robots without
deforming the terrain. This trade-off is sufficient for screws interacting with hard ice and
less so for modeling interaction with loose, unconsolidated materials such as snow or sand.
To compute these forces without terrain deformation, a spring–damper normal force plus
anisotropic friction model was used. This model allows one to simulate the skewed traction
forces that are produced by the threads of screws interacting with ice or other hard surfaces
without needing to calculate and simulate terrain deformation.

Figure 6 shows a comparison between an isotropic friction model and an anisotropic
friction model. The symbols used in this figure are described mathematically in the
following paragraphs.

Figure 6. Depiction of anisotropic friction and associated tangential velocities (right). For reference,
the classic isotropic friction model is shown on the (left).

In a classic isotropic friction model, the friction force, Ft, is calculated as simply

Ft = −Fnµv̂t (1)

where Fn is the normal force at the contact point, µ is the friction coefficient, vt is the
tangential velocity between the colliding bodies at the collision point, and v̂t = vt/||vt||
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is the unit vector in the direction of vt. The friction coefficient between the two bodies is
invariant to the direction of the tangential velocity. The penalty method contact force in the
normal direction, Fn, is calculated as

Fn = (k d + c||vn||)v̂n (2)

where vn is the component of velocity parallel to the contact normal, k is the linear spring
constant for the contact, c is the damping coefficient, and d is the penetration distance.

In contrast, in an anisotropic friction model, the friction coefficient varies depending on
the tangential velocity direction, leading to a different formulation for Ft. This anisotropic
model defines two friction coefficients: one parallel and the other perpendicular to the axis ev.
The tangential velocity direction is decomposed into components parallel and perpendicular
to this axis, which are ultimately used to calculate the friction force. Mathematically,

Ft = −||Fn||

 µ||ev|| 0 0
0 µ 0
0 0 0

 t1
t2
0

, (3)

where t1 is the magnitude of the component of v̂t parallel to ev and t2 is the magnitude of
the component of v̂t perpendicular to ev. Substituting the following

t1 = v̂t · êv, (4)

t2 = ||v̂t − êvt1||, (5)

into Equation (3) and simplifying yields

Ft = −Fnµ
(

v̂t + (||ev|| − 1)(v̂t · êv)êv

)
(6)

where êv = ev/||ev||. The effect of this model is to essentially skew vt to be ve as indicated
in Figure 6. Note the case where ||ev|| = 1 recovers the isotropic case given in Equation (1).
Values of ||ev|| ̸= 1 indicate anisotropy is present.

Experimentally, all one needs to determine in order to use this model for Ft are the
values of µ and ev. The direction of ev is based on the angle of the screw threads since the
difference in screw–terrain interaction normal and parallel to the screw threads is what
causes the difference in modeled friction. The magnitude of ev and µ are determined by
experiments. These experiments involve dragging a screw along the terrain normal and
parallel to the threads and measuring the force it takes to keep it moving at a constant
velocity. This is performed with different amounts of weight on the screw to simulate
different normal forces as the magnitude of ev changes with the normal force applied.

Figure 7 shows an example of the aforementioned experimental data and the calcula-
tion process for µ and ||ev||.

The top-left plot of Figure 7 shows the friction coefficient parallel to the screw thread as
a function of normal force. The friction coefficients were determined by dividing the force
it took to drag the screw at a constant velocity parallel to the threads by the normal force.
The data show that the parallel friction coefficient is approximately the same, regardless of
the normal force. Hence, the average of these values was used as µ. The top-right plot of
Figure 7 shows similar data for the friction coefficient normal to the screw threads: these
data were collected in the same way as the parallel friction coefficient, but by dragging
the screw normal to the threads rather than parallel to the threads. The normal friction
coefficient changes with the normal force. The ||ev|| values in the bottom plot of Figure 7
were obtained by dividing the normal friction coefficient data from the top-right plot by
the value of µ obtained from the top-left plot. Then, a linear fit was applied to the data.
The results of the linear fit and value of µ are used in the EELS-DARTS anisotropic friction
model as µ and ||ev|| for contact points. A validation experiment performed to study
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how well this simple anisotropic friction model matched real-world behavior for a surface
traversal scenario on hard synthetic ice is discussed in Section 4.2.

Figure 7. Calculation of ||ev|| from experimental data. Top left: friction coefficient parallel to the
screw threads vs. normal force. Top right: friction coefficient normal to the screw threads vs. normal
force. Bottom: ||ev|| vs. normal force.

2.2.3. Graphics and Perception Models

Development and testing of guidance, navigation, and control (GNC) for closed-loop
autonomy in the loop with perception requires simulation of raw sensor data. EELS-DARTS
uses IRIS-DARTS [26] for camera and lidar sensor simulations. IRIS-DARTS provides high-
fidelity, real-time camera, and lidar simulation via a versatile and extensible ray-tracing
pipeline for accurate engineering quality sensor modeling.

IRIS-DARTS uses the GPU-accelerated ray-tracing OptiX library [36] for real-time
rendering, with implementations of Whitted ray tracing and path-tracing for varying levels
of lighting fidelity. Path tracing optionally includes a machine-learned (ML) denoiser that
eliminates sampling noise with limited stochastic ray samples. This pipeline allows for
adjustment of lighting fidelity within the same virtual environment to provide sufficient
accuracy-speed trade-off adjustment for a wide range of perception tasks.

IRIS-DARTS supports multiple camera models, including pinhole, fish-eye, and
CAHV/CAHVOR/CAHVORE models. The CAHVORE family of models [37] are used
by the machine vision community to capture non-idealities due to optical distortion and
sensor alignment. The first four parameters (C, A, H, V) define the camera extrinsics and
sensor plane offsets for cameras that deviate from the pinhole assumption. The CAHVOR
model extends this to include a non-ideal optical axis, O, and three radial lens distortion
parameters captured by R. The lens distortion is further extended by CAHVORE to support
a non-central entrance of light through the aperture. The entrance vector in this model
is captured by E. Examples of these models are shown in Figure 8. In addition to lens
distortion, IRIS-DARTS supports camera noise, lens and aperture vignetting, color, and
gamma adjustments via a general-purpose and extensible filter pipeline to support arbitrary
image processing algorithms as part of any sensor model.
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Figure 8. Example (a) CAHV, (b) CAHVOR, (c) CAHVORE images showing camera distortion with
C = (0, 0, 35), A = (0, 0, −1), H = (734.264, 0, −310), V = (0, −714.264, −320), O = (0, 0, −1), R = (0.05,
−0.21, 0.01), E = (0.12, −0.14, 0.13).

The lidar in IRIS-DARTS is implemented using the same ray-tracing architecture as
the camera, ensuring consistent generation of multi-modal sensor data. Since physical
lidars have a wide variety of beam patterns, IRIS-DARTS supports both a parametric grid,
as commonly found in scanning lidars, as well as a user-defined beam pattern specified
by an array of origins and directions for the beams. EELS-DARTS currently implements
a number of different beam patterns to match lidar units installed on various versions
of EELS hardware. The data produced by the lidar model include the points as well as
the intensity of the hit-point, modeled with diffuse reflectance. More complex reflection
models are planned for future work.

IRIS-DARTS provides visualization capabilities within EELS-DARTS to assist in simula-
tion setup and autonomy development by providing debug information such as frame axes
and labels, wheel tracks, and live sensor data within the scene (see Figure 9). Viewing the sen-
sor data from a third-person perspective can assist with the development of sensor coverage
and provide insights and context to the sensor’s perspective and data. To ensure the accuracy
of sensor data while simultaneously providing debugging and context information to the user,
objects can be masked as physical or ornamental, with sensors only capturing physical objects,
whereas a visualization viewport can show physical and ornamental geometry.

Figure 9. EELS-DARTS simulation with three stereo camera pairs and a lidar, with data displayed in
a planview viewport, providing insight and context. A second viewport (lower right) exclusively
displays the simulated lidar point cloud. The color of the points encodes distance from the sensor,
blue being the closest and red being the farthest.
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2.2.4. Force-Torque Sensor Models

Some EELS robots, such as EELS 1.5, are built with 6 DOF force-torque sensors (FTS)
installed between some of the modules. The purpose of the FTS array is to provide control
algorithms with feedback about the state of the contact between the robot and the walls
when operating in subsurface environments. In EELS-DARTS, each FTS is treated as a
separate body that is connected to its parent via a locked zero DOF hinge. The hinge and
body are positioned to match the sensing frame of the transducer. Using this approach, the
FTS component models implemented in EELS-DARTS can compute the FTS wrench by
directly extracting the inter-body spatial forces between the FTS body and its parent body.
Inter-body spatial forces are readily available within the DARTS dynamics solver, and so
these queries for the FTS model incur little extra computational cost. The force-torque
wrench is then published by the ROS server (see Section 3.2) as a standard WrenchStamped
message. The wrenches are currently published as ground truth measurements without
noise, however, noise characteristics can be easily implemented to suit project needs in the
future if desired.

2.2.5. Joint Control

The EELS robot’s autonomy stack is responsible for higher-level tasks such as screw
velocity allocation control, motion planning, proprioception, exteroception, risk estimation,
and mission planning. A detailed description of the autonomy stack is out of the scope of
this paper. However, interested readers are referred to [10] for a detailed description of the
joint control strategies that exploit the anisotropic properties of screws to enable complex
motion control, to [6] for a description of the perception and localization algorithms, and
to [5] for a discussion of the risk-aware task and motion planner. At the lowest level
of the autonomy stack, these actions are translated into desired joint positions and/or
velocities. These commands are then published and sent to EELS-DARTS as input to joint
controllers implemented within EELS-DARTS. Because EELS-DARTS is intended to be
a simulation analogue for hardware, the joint controller options implemented in EELS-
DARTS are relatively basic, the default being a standard PID controller similar to the ones
implemented in hardware. The gains for these controllers are configurable by the users and
were generally tuned ad-hoc to yield low tracking error. This allows autonomy engineers to
focus on autonomy stack development and not worry about the lower-level control issues.
It is common for DARTS simulators to interface with the full flight software (FSW) stack
during later stages of a project, and this will be done in the future for EELS-DARTS as the
autonomy stack matures.

2.2.6. Robot Initialization and Placement

The start of a simulation scenario involving operation on rough terrain requires the
computation of an initial state for the robot that places it appropriately at the start location
and pose. Solving for the placement state for the EELS snake robot of arbitrary shape and
size within arbitrarily shaped environments (glaciers, channels, vents, crevasses, etc.) is
non-trivial since there can be many contact points required that are not known a priori.
EELS-DARTS includes a placement algorithm that solves for the 30+ DOF state values that
set the robot’s shape so that it is in non-penetrating contact with the rough terrain surface.
The placement algorithm can be broadly viewed as solving the inverse kinematics (IK) for
the robot’s state and terrain contact points, satisfying the user-specified initial constraints
and those from the terrain topography.

EELS-DARTS breaks the placement problem down into two distinct parts: (1) Initial-
izing with a preliminary shape guess; (2) Followed by a settling phase that “pulls” the
robot into the terrain. As a first step, the snake robot is initialized with an initial guess of
the shape. This initial guess necessarily requires some form of domain knowledge about
what shape is optimal for the given scenario and is informed by autonomy engineers. For
example, if the robot is starting inside a cylindrical channel, the initial guess may be a helix
shape, similar to what is shown in Figure 2. The second step then proceeds by “pulling”
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the snake robot into the terrain by disabling gravity and applying attraction forces to many
points on the robot. For a given point, the attraction force acts in the direction between
the given point on the robot and the shortest distance to the terrain. The force applied is
proportional to the distance to the terrain, similar to a spring. This process is simulated
until equilibrium has been reached and the robot is in a sufficient state of contact with
negligible movement. The autonomy system then takes over and commands the robot to
actively maintain this initial state at which point gravity is re-enabled. Figure 10 shows an
example of this placement process inside a rough cylindrical terrain.

Figure 10. Example of an initialization and placement process inside a rough cylindrical subsurface
environment. The red, green, and blue lines represent the x, y, and z axes of inertial coordinate system,
respectively. In this view gravity is acting into the page: (a) Shows the robot initialized as a helix. The
yellow arrows represent attraction forces that pull each module of the robot in toward the terrain.
(b) Shows the final placement of the robot.

There is also an option to attach an arbitrary number of “tethers” to help support
the robot during initialization, similar to how the robot would be rigged up with ropes
during an actual field experiment (see example test setup shown later in Section 4.3.1).
These tethers are implemented as simple stiff spring–damper models that can be attached
to arbitrary points on the robot and anchored to fixed points in space. This placement
framework greatly improved the success the EELS autonomy team had in initializing the
simulator state to match the prototyping and testing experiments in the field.

3. Using the Simulator

In this section, we discuss how users launch and interact with an EELS-DARTS
simulation. A command-line interface is provided to launch and specify options, and a
Robot Operating System (ROS) interface is used to close the loop with the robot control
and autonomy software.

3.1. Command Line Interface

The EELS-DARTS application provides an extensive command line interface (CLI)
to run and configure the simulation. The CLI referred to as Dclick builds upon the open
source click Python package. Most of the CLI options are used to specify settings and
parameters to configure the simulation and set up a desired scenario. For example, a small
subset of the available CLI options are as follows:

• Sim—select robot to use, toggle interactive command-line mode, etc.
• Integrator—select integrator type, tolerances, step size, etc.
• Graphics—select graphics back-end to use, path-tracing options, skybox settings, etc.
• Contact—select contact model to use, set parameters for contact models.
• Terrain—select terrain to use.
• Perception—enable/disable cameras and lidar, set parameters for perception models.
• Joints—enable/disable spring–damper models for joints, set spring–damper parameters.
• ROS—enable/disable ROS interface, set ROS topic publishing rate.
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Fully configuring a simulation can involve specifying tens or hundreds of settings and
parameters. To avoid the need to write everything out at the command line and to enable
repeatability, Dclick supports saving and loading configuration files. Once a simulation
has been run, a full configuration file can be saved, edited, and loaded later as needed. A
combination of command-line arguments and configuration files can be used as input to
run the simulation, and precedence is given to the options specified at the command line.
Any setting that has not been specified by a user reverts to a default value.

3.2. ROS Interface

Once the simulation has been configured and launched, it can be interacted with in
real time using ROS. ROS is a widely used open-source robotics software development
platform. EELS-DARTS implements an interface that uses the ROS topics and messages
system to send and receive standardized packets of information to the EELS autonomy
stack. Since the EELS-DARTS simulator is intended to be a sufficiently similar drop-in
replacement for actual robot hardware, EELS-DARTS publishes ROS messages such as
joint states and sensor outputs (IMUs, cameras, lidars, etc.) that are published by the
hardware. Moreover, EELS-DARTS can process ROS messages from the autonomy stack
to control various aspects of the simulation in real time, for example, joint controller set
points, placing/moving the robot, toggling gravity, and so on. Figure 11 shows a simplified
graph of published and subscribed ROS topics for EELS-DARTS.

Figure 11. Graph of ROS topics that EELS-DARTS publishes and subscribes to. Some topics, such as
/joint_states, provide information about the state of the robot, while others, such as /enable_gravity,
allow users to interact with the simulation in a uniform manner.

4. Results

In this section, we discuss a variety of simulation results from the EELS project
development. We first present a selection of simulation scenarios that were run to aid and
inform the design process. We then perform a brief validation analysis for the anisotropic
friction contact model. We finish with a description of a recent field test to the Athabasca
Glacier in Alberta, Canada, and discuss how the EELS-DARTS simulation was used during
field-test operations planning.
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4.1. Example Uses of the EELS-DARTS Simulator

The EELS-DARTS development and evolution continued side by side with the rest
of the EELS project from the early stages. The simulator has been used to investigate a
wide variety of scenarios ranging from simple to complex. For example, one of the first
studies performed was a tethered dangling test inside a synthetic cylinder tube, shown in
Figure 12a. Next was an investigation of the surface traversal capabilities of the EELS 1.0
robot using screw-based and shape-based locomotion gaits, shown in Figure 12b. Then,
scans from field tests were brought in, shown in Figure 12c. Additionally, leading up to
the field test discussed in Section 4.3, the EELS 1.5 robot model was tested in a variety of
subsurface environments, shown in Figure 12d. As mentioned previously, the simulator
was also used to test perception algorithms, utilizing the IRIS-DARTS camera and lidar
models available in DARTS. An example of this is shown in Figure 13.

Figure 12. (a) An example of a synthetic cylinder-tube subsurface environment. (b) EELS version 1.0
initialized into a crescent shape during a surface traversal scenario on flat synthetic terrain. (c) EELS 1.0
traversing inside a field-test scan of a glacier channel taken from Athabasca, Canada. (d) EELS version
1.5 rigged into a synthetic U-channel subsurface environment. The white lines indicate tethers used to
support the robot before the robot has fully supported itself by pushing against the walls. The red, green,
and blue arrows represent the x, y, and z axes of each module’s coordinate system, respectively.

One important aspect during testing was simulation runtime performance. It was
required that the simulation run at least roughly 75% real time, meaning running a 30 s
simulation would take 40 s to execute on the computer. Preferably, the runtime performance
is closer to 100% real time. This requirement was due to a few reasons. First, closing the
loop with the autonomy stack requires that the simulation run in lockstep with the stack,
which operates in real time. If the simulation lags too far behind the stack, this causes issues
when exchanging commands and information. Additionally, engineers needed to rapidly
test the simulation with as little turnaround time as possible. Waiting for simulations
to finish running could cause a buildup of delays in testing schedules. We found the
improvements that made the most significant speedups were as follows: including a
multibody optimization step (discussed in Section 2.1.4), using SDFs to represent terrain



Aerospace 2024, 11, 795 16 of 23

instead of meshes for collision detection (discussed in Section 2.2.2), applying regulators
to the anisotropic friction model to prevent integrator thrashing at rest, and selecting an
integrator method that was suited for stiff dynamics, due to a large number of contacts and
PID controllers handled by the simulation. With these improvements, the simulation was
able to run at roughly 75% real time on compute-constrained hardware such as laptops and
up to roughly 100% real time on dedicated workstations.

Figure 13. An example of a perception stack test with EELS-DARTS. Shown is the EELS 1.0 robot
traversing inside an obstacle course in EELS-DARTS (left). The red, green, and blue arrows on the
left represent the x, y, and z axes of local coordinate systems on the robot, respectively. The outputs
from the lidar model from EELS-DARTS are fed into the perception stack to generate obstacle cost
maps in order to test trajectory planning algorithms (right). The color grid overlaid on the right
represents the terrain elevation estimated by the autonomy system, white being zero, and green being
higher elevation. The blue line represents a desired path, and the red spheres indicate where the
robot modules are positioned relative to the desired path.

4.2. Contact Model Validation

A brief validation experiment was performed following the development of the
anisotropic friction model to quantify how closely the model could capture real screw
behavior on hard consolidated ice with negligible screw penetration. The experiment first
involved a surface traversal in a lab environment with the EELS 1.0 robot initialized in a
crescent-shaped pose, shown in Figure 14. Then, with the bend and twist actuators locked,
the robot rotated the screws in various combinations of speed and direction to move itself
about the surface. The surface material was hard synthetic (plastic) ice. The position and
velocity of each joint were recorded by hardware transducers. The two-dimensional pose
(XY position and yaw angle) of the unactuated (free) tail segment was measured with
respect to an inertial frame using a VICON system in the lab. The VICON measurements
were considered the “ground truth” for the free degrees of freedom of the robot.

The experiment was then repeated in EELS-DARTS. The previously recorded joint
positions and velocities were fed as set points into PID controllers in the simulation in order
to mimic the screw rotations executed by the robot on hardware. The PID controllers in
the simulation were tuned to yield very low tracking errors. Finally, the resulting motion
of the free degrees of freedom of the tail in the simulation was compared to the ground
truth values measured in the real world. Mimicking the motion of the actuated degrees of
freedom of the screws as closely as possible in simulation allowed the macroscopic behavior
of the anisotropic friction model to be verified. If the screws rotated the same in simulation
as on hardware, it was expected that the resulting motion of the robot should be the same.
The results of this comparison are shown in Figure 15.
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Figure 14. Camera still from a surface traversal experiment on hard synthetic ice with the EELS
1.0 robot at JPL (inset) and the same setup recreated in simulation. The initial joint positions were
measured by transducers on the hardware and used to initialize the robot multibody in simulation.
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Figure 15. Measured robot motion compared with simulation predictions for a 45 s screw-based
surface traversal experiment on hard synthetic ice. The left plot shows measured tail x, y position
and yaw as a function of time compared with the same values predicted using the anisotropic friction
model in simulation. The right plot shows the error (simulation-truth) as a function of time.

The results shown in Figure 15 indicate that the macroscopic behavior of the screws
is captured well by the anisotropic friction model. The resulting motion of the robot in
simulation and experiment match well. Over the course of a 45 s traverse, the largest
tracking error was slightly more than 4 cm in position and roughly 0.06 radians for rotation.
There does not appear to be a systematic bias in the model. Sometimes, the movements
are slightly larger than expected, and sometimes, they are smaller. There are a number
of second-order effects that are likely not properly captured in the model, including non-
uniform surface properties in the lab (dirt, surface roughness, etc.), screw penetration into
the ice sheets, imperfect modeling of mass properties of the robot, and so on. However,
the general motion trends showed good agreement. Finally, it is important to note that the
anisotropic friction model is limited to screw-based locomotion using sharp-edged screw
blades on hard ice with minimal penetration. Various factors such as thick, rounded edge
screws or unconsolidated snow or sand are beyond the limits of the model and instead
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would likely require semi-empirical terramechanics approaches [38]. This is planned for
future work.

4.3. Athabasca Glacier Field Test

A motivation for the development of EELS-DARTS was to provide simulated environ-
ments to enable testing and planning for experiments in the field with the actual robots.
One such field test was conducted at the Athabasca Glacier in Alberta, Canada [31]. This
site was chosen since it is a good terrestrial analogue to Enceladus for demonstrating
vertical mobility. Experiments were performed on the glacier in various moulins, which
are vertical shafts that form within the glacier by water percolating through small cracks in
the surface. The goal of these tests was to evaluate the real-world performance of various
locomotion control strategies for vertical mobility in these moulins. The success of the tests
was determined by whether the robot was able to support its own weight when attempting
to remain in a static position in the vertical shaft, the total distance traveled during an
experiment, and robustness to disturbances from rough sections of ice. The robot tested in
these scenarios was the EELS 1.5 platform described in Section 2.1.2, which was specifically
designed for vertical mobility experiments.

4.3.1. Simulation Testing for Field Test Scenarios

The most important characteristic to capture accurately in the simulation was the
screw–ice interaction, namely the anisotropic friction properties described in Section 2.2.2.
The robot’s locomotion control strategies involve exploiting the screws’ anisotropic friction
properties, and as such, inaccurate simulations can lead to large discrepancies when
deployed in real-world scenarios.

EELS-DARTS provided a critical piece of the infrastructure in the development and
verification process of vertical mobility locomotion strategies. During development, follow-
ing initial unit-testing of each iteration of the controller, the next step would be evaluation
in simulation. The main integration test used to evaluate controller performance would
sequentially evaluate whether the control strategy was capable of making contact with the
environment surface, holding a static position when supporting its own weight for a set
time period, and tracking the total vertical distance traversed before a mobility failure.

For simulation, we flagged a mobility error when the angle between the pitch of the
body and the gravity vector exceeded 60 degrees, which was determined to be irrecoverable.
If this condition was detected, the simulation run was terminated.

The simplest scenario to evaluate the system in was a set of parallel walls, where
the system attempted to push into the walls and then climb upward. Figure 16 displays
the EELS 1.5 system simulated in this environment in EELS-DARTS. Also shown is a
similar scenario recreated experimentally inside a walk-in freezer at JPL. Multiple vertical
stability and mobility tests were performed on real ice in the freezer alongside EELS-DARTS
simulation runs prior to the field test at the glacier.

Another useful scenario to evaluate the system was to place the robot into a mesh
from a 3D reconstruction of a real-world moulin. These 3D reconstructions often come from
high-density point cloud scans. Once converted into a mesh format, these can easily be
used within the EELS-DARTS environment. Using these reconstructions, we can evaluate
the robot system’s performance in realistic scenarios that are expected to be seen when
deployed with hardware. Figure 17 displays three different views of the EELS 1.5 robot
being simulated within an imported moulin reconstruction mesh.
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Figure 16. Left: view of the EELS 1.5 robot simulated within EELS-DARTS prior to executing its plan
to engage contact with the wall and attempt to climb. White lines represent tethers. The red, green,
and blue lines represent the inertial coordinate system. Right: image of the EELS 1.5 robot suspended
within a vertical ice wall testbed inside a walk-in freezer lab at JPL.

Figure 17. Frames of the EELS 1.5 robot being placed in different locations within a reconstructed moulin
scan that has been imported into EELS-DARTS. (1), (2), and (3) show sequential frames of the robot
being manually placed further down into the moulin supported by tethers (white lines). The red, green,
and blue lines represent the x, y, and z axes of the coordinate system for the moulin scan, respectively.

Once there was confidence in an iteration of the control strategy, the method would be
deployed to hardware and tested in a real-world moulin. Figure 18 shows EELS 1.5 being
deployed into a moulin by the field test team along with close-up images of the screws
making contact with ice. The system was able to down-climb successfully over 1.5 m into a
moulin similar to this one.

Figure 18. Left: the EELS 1.5 robot being deployed into a moulin in Athabasca. Right: close-up
images of the EELS 1.5 screws engaging in contact with rough and uneven ice walls.

4.3.2. Challenges

A key challenge faced when transferring control strategies tested in EELS-DARTS to
hardware was the temporal aspect of the screw–ice interaction. In order to obtain sufficient
screw penetration into the ice, a criterion necessary to sustain meaningful load with the
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screws, it was necessary to heat the screws to a temperature between 10 and 40 degrees
Celsius, where the temperature was verified with onboard thermocouples. When the screws
engaged in contact with the ice, they would immediately start melting into the surface,
and if motion did not start quickly enough, the screws risked penetrating so deep into
the surface that the controller was incapable of pulling itself out and continuing the climb.
This results in a vertical mobility failure that is irrecoverable without human intervention.
Future development of the EELS-DARTS screw–ice interaction model may include such
temporal thermal aspects to enable the development and iteration of more robust vertical
mobility locomotion strategies.

5. Conclusions

In this paper, we have presented EELS-DARTS, a novel simulator built upon the JPL
DARTS framework for simulating large-scale snake robots. We discussed various features
that allow EELS-DARTS to be a powerful and versatile simulation framework. The versatile
dynamics modeling framework provided by DARTS allows users to quickly process and
import new snake robot designs into the simulator with minimal effort. The CLI and ROS
interface allows a full autonomy stack loop to be closed around EELS-DARTS, providing
a fully featured software analogue to actual robot hardware. EELS-DARTS provides a
highly configurable simulation environment, including terrain selection, robot initialization,
and placement.

EELS-DARTS implements a fast and reasonably accurate anisotropic friction model
to provide screw–terrain interactions for hard ice scenarios. We compared the overall
robot position predicted in simulation using the anisotropic friction locomotion model with
experimental results for a 45 s traverse on hard synthetic ice. The predicted tail position of
the robot differed from experiment by at most roughly 4 cm in x, y position and roughly
0.06 radians (3.4 degrees) in yaw. No obvious consistent offsets between simulation and
experiment were observed. It was hypothesized that some of the observed differences could
be attributable to imperfect modeling of surface properties in the lab, non-negligible screw
penetration into the synthetic ice sheets, and imperfect modeling of mass properties of the
robot. We determined that the model was sufficiently accurate for the application at hand,
which required near real-time performance. We emphasize that the anisotropic friction
model is only suitable for use under the following assumptions: hard, non-deformable
contacts, minimal penetration, sharp screw edges, minimal surface melting, and uniform
surface properties.

We described how EELS-DARTS has been used to simulate multiple evolutions of
EELS robot designs and topologies, test the full autonomy stack, including locomotion and
perception algorithms, and prepare for field test scenarios.

For future work, we plan to explore terramechanics approaches to model screw–terrain
interactions for soft soil or sand scenarios. We also identified that the anisotropic friction
model could be extended to include a temporal thermal component to capture ice melting
effects seen during experiments. Such contact modeling extensions would allow more
accurate simulation in more varied environments. We also plan to continue supporting
new robot designs and features as needed by the EELS project.
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The following abbreviations are used in this manuscript:

CLI Command-line interface
DARTS Dynamics Algorithms for Real-Time Simulation
DEM Digital elevation model
DOF Degree of freedom
EDL Entry, descent, and landing
EELS Exobiology extant life surveyor
FSW Flight software
FTS Force torque sensor
GNC Guidance, navigation, and control
GPU Graphics processing unit
IK Inverse kinematics
IMU Inertial measurement unit
JPL Jet Propulsion Laboratory
MDPI Multidisciplinary Digital Publishing Institute
ML Machine learning
NASA National Aeronautics and Space Administration
PID Proportional–integral–derivative
ROS Robot operating system
SDF Signed distance field
SOA Spatial operator algebra
URDF Universal robotic description format
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