
SMC-IT 2009 Paper ID #16

1

Abstract—This paper describes the multi-mission Dshell++

simulation framework for high fidelity, physics-based simulation

of spacecraft, robotic manipulation and mobility systems.

Dshell++ is a C++/Python library which uses modern script-

driven object-oriented techniques to allow component reuse and

a dynamic run-time interface for complex, high-fidelity

simulation of spacecraft and robotic systems. The goal of the

Dshell++ architecture is to manage the inherent complexity of

physics-based simulations while supporting component model

reuse across missions. The framework provides several features

that support a large degree of simulation configurability and

usability.

Index Terms—Aerospace simulation software

I. INTRODUCTION

RADITIONALLY, spacecraft simulations have been built as
a monolithic program targeted to a specific mission

application [1]. Early simulators were developed using a
procedural, non-object-oriented programming language
optimized for mathematical computations such as FORTRAN
 [1]. Adding or changing a feature, altering the internal data
structures or even modifying the format of the input/output
data usually required a deep understanding of the entire
simulation [2]. With the advent of personal computers and
workstations, tools such as Matlab and Simulink [3] gained
popularity for building simulations. These tools introduced a
visual, interactive interface but lack the capability to work
well in embedded systems which required real-time
performance.

Dshell++ is a high fidelity, multi-mission, physics-based
simulation toolkit with the goal of increasing simulation
productivity by using modern object-oriented techniques to
allow component reuse, a data-flow architecture, and a
dynamic run-time interface for complex, high-fidelity
spacecraft and robotics systems simulations.

Object-Oriented Design

Dshell++ is the next generation version of the Dshell
spacecraft dynamics simulator [4] completely redesigned and
rewritten in C++. Dshell++ uses object-oriented techniques to
allow code reuse and component building. Dshell++
simulations consist of a collection of component device
models from model libraries assembled and connected
together into a data flow to meet the required simulation
behavior. For example, a thruster model is a C++ class
derived from (and inherits all the properties of) an actuator

C++ base class which models a device that applies a force on
a body. Dshell++ provides facilities for the inter-connection
and efficient data exchange between such models. Related
models within sub-systems (for example, a bank of thrusters)
can be grouped together into an "assembly" which in turn can
be part of a larger assembly. The assemblies are reusable and
can be used across more than one simulation. This allows
complex simulations to be built by simply choosing and
connecting the desired components together.

Python Interface

While simulators [5] have been built around C++ and
object-oriented techniques, Dshell++ wraps a Python [6]
interface around the C++ classes so simulation setup and
control can be completely script-driven. Selecting which
models to include, specifying the data-flow connections and
initializing the states and parameters are entirely specified
through Python scripts that are processed at run-time. If a
new, improved model becomes available, incorporating the
new model is straightforward: simply swap out the old model
with the new one in the Python scripts with no recompilation
required. Users can access and even extend the simulation
functions and C++ classes at run-time entirely in Python
without modifying the C++ classes. Python provides all of the
extensive features of a modern software language as well as
additional ones including parsers, run-time loading of
extensions, and a large collection of open source Python
modules that are available to the simulation developers and
users. Special functions, called “watch handlers” which are
written in Python, can be created to trigger on events and
monitor or plot data to the screen. Visualization in real-time
(such as watching a rover slipping down a slope) is possible
through the Dspace 3D toolkit [21]. Interfaces to external
applications (such as Matlab) can be built entirely through the
use of Python scripts.

Real-Time Performance Across Mission Domains

Dshell++ includes the multi-mission high-performance
DARTS [13] flexible multibody dynamics module based on
the Spatial Operator Algebra framework [8] for solving the
dynamics of multi-body dynamics. Dshell++ has been used to
develop real-time simulations for cruise/orbiter vehicles as
well as to develop domain specific simulators such as
ROAMS for surface rover simulations [9] and DSENDS [10]
for entry, descent and landing simulations. These simulators

Dshell++: A Component Based, Reusable Space
System Simulation Framework

Christopher S. Lim and Abhinandan Jain

T

SMC-IT 2009 Paper ID #16

2

have been in use by a number of successful NASA missions
(Mars Science Laboratory, Phoenix) as well as technology
development activities (Athlete [11] and the Lunar Surface
Operations Simulator [12]).

Portability

Dshell++ is portable. The underlying framework is written
in standard C++ and is highly optimized to run in real-time
on laptops, desktop workstations and supercomputers.

II. ARCHITECTURE

The key design requirements on Dshell++ are: reusability
across mission domains, a modular design to reduce
maintenance costs by simplifying updates and improvements,
real-time performance and an interface which allows users to
manage and customize complex simulations. We describe
here the salient features of the Dshell++ architecture’s that
have been designed to meet these challenges.

A. Multi-domain Simulations

Physics-based simulations developed using Dshell++ are
used extensively by space missions. Dshell++ based
simulations have been used on workstations, in hardware-in-
the-loop real-time simulations for space mission simulators
for orbiter/cruise spacecraft, planetary surface rovers [12],
entry-descent-landing simulators [10] and airship simulations
(Fig. 1). Such simulations can include space environment
models that are difficult if not impossible to create such as
zero-g and planetary surface terrains. Such simulations are
also used to explore a breadth of mission scenarios that would
be too expensive or time-consuming to evaluate in physical
simulators. Thus the family of simulations can vary widely
across mission testbeds and from mission to mission.

Beyond diversity, the other challenges spacecraft

simulators face are the stringent high-fidelity requirements
and the demanding faster than real-time performance
required for use in real-time, closed-loop, hardware-in-the-
loop testbeds.

B. Reusability

To reduce the cost of simulator development, the Dshell++
architectural approach has been to design reusable component
models as building blocks to develop simulations. The
component models are organized as libraries which can be
assembled to develop a variety of simulations. This approach
permits a significant degree of reuse of models across
simulations, as well as the ability to jump-start new
simulators using models generated for other testbeds and by
previous missions. The model reuse facilitates the continuing
evolution, and maturation of the component models – a
benefit that does not accrue with monolithic simulators.

C. Modular Design

As mentioned earlier, reusability across multi-domain
simulations is a driver for component model-based simulation
design. Complexity management is an equally important
motivator for the modular architecture since hundreds to
thousands of parameters and states are present in spacecraft
simulators of even moderate complexity. Modularity brings
with it the important benefit of encapsulation, information
hiding and well defined interfaces across functional
boundaries. Information hiding allows one to isolate
functional blocks from each other and permit interactions
only through clearly defined interfaces. It allows users to
decouple and localize functionality within the simulation to
facilitate testing, debugging, refactoring and evolution of
simulations.

D. Data Flow

A data-flow architecture is used for simulation execution
and component model interconnections and communications.
Facilities are available to allow the exchange of typed data
between models without inducing coupling between the
details of individual model implementations. For example the
output from a model generating information about the attitude
and rate of a node can be distributed to other models needing
this data through connector signals without exposing details
on how the data are generated by the model (Fig. 2).

E. Model Organization

Beyond the data-flow modularity, component models are
based on an object-oriented design where model classes can
be organized into hierarchies involving related models, e.g.
families of gravity models, thruster actuator models (Fig. 3).

Each Dshell++ model has a standard interface for
parameter and state data as well as for flow inputs and
outputs which can be customized for each specific model.

Fig. 1 Dshell++ has been used to create physics-based simulations for a broad range of mission domains.

SMC-IT 2009 Paper ID #16

3

Model states can include both discrete and continuous states.
A model interface file declares these externally visible
characteristics for each model. Auto-code generators based on
the Cheetah templating tool [16] were written to read these
interface files and generate C++ model code.

The system's DARTS [13] multibody dynamics module is a
key backbone layer supporting all the component models. The
DARTS module is responsible for propagating the dynamics
state of the system (e.g. spacecraft attitude and velocities,
momentum, mobility slippage, vibration modes) using
numerical integrators. The multibody dynamics states can be
highly non-linear and coupled, and even though the physical
assets (e.g. vehicles) may be distinct, their interactions must
be handled together for the proper solution to the system's
dynamics. As a consequence, the dynamics module is
implemented as a unified model that includes contributions
from all multibody components in the system. However, we
have been careful to make sure this coupling does not
adversely impact the overall modularity of the system.
Towards this, component models have been designed to have
a restricted interface to the multibody model to avoid
unnecessary interactions and coupling among the component
models.

F. Real-time Performance

Dshell++ simulators are used in real-time, hardware-in-
the-loop, closed-loop simulations. High-performance speed is
essential for such embedded use in time-critical testbeds.
Toward this end, Dshell++ is designed to minimize
unnecessary overhead that can impact performance. One
potential area affecting performance is the need to exchange
data among the several component models that constitute the
simulation. Dshell++ provides a special connector facility
called signals which allows the sharing of memory slots
across models. Model outputs write to these shared memory
slots while model inputs read from them. Thus there is no
packetizing overhead from such data exchange.

Many of the component models have to interact with the

DARTS multibody dynamics [13] library which computes the
kinematics and dynamics state of the space vehicle. The
Dshell++ models have explicit interfaces to the relevant
nodes and hinges in the DARTS model that allow them to
make direct function calls to get/set the needed data
efficiently.

The multibody dynamics module often dominates the
computational cost for physics-based simulations. To address
this, Dshell++ makes use of the DARTS dynamics engine
(Fig. 4) that implements the fast Spatial Operator Algebra [8]
based dynamics algorithms. The computational complexity of
these algorithms is just linear in the number of degrees of
freedom in the system. Moreover, DARTS allows the
modeling of the dynamics of both rigid and flexible bodies
with full implementation of the non-linear rigid-flex coupling
to support very high-fidelity modeling with the most efficient
algorithms available. DARTS' high-speed algorithms provide
sufficient performance to typically allow the simulations to be
used in mission testbeds without compromising performance
speed or fidelity.

Fig. 3 Component models are based on an object-oriented design where model
classes are organized into class hierarchies.

Fig.2 Data flow between models. In Dshell++, a model has user-defined input

and output ports. Data is shared between models by tying a model’s input port
to another model’s output port through a signal (basically a shared memory
buffer). Users can peek or poke the signal data through the Dvar interface.

Fig. 4 The DARTS C++ library solves equations of motion for flexible
multibody systems based on the dynamics properties of the bodies and the forces
applied to those bodies.

SMC-IT 2009 Paper ID #16

4

G. Simulation Management

Simulator complexity is a natural byproduct of the large
number of models involved in assembling typical spacecraft
simulations. One of the goals of the Dshell++ architecture is
to help manage this complexity. The approach is to build in
checks that verify the consistency and correctness of the
configured models in the assembled simulator. For instance,
Dshell++ includes methods to verify that all model inputs and
outputs are properly connected with matching types, which
helps to reduce user errors.

Changes to the simulator configuration require explicit
"unlocking" and "locking" of the system. When the system is
“locked,” any change to the topology of the simulation will be
reported as an error. This ensures that simulation
configuration changes cannot be made inadvertently and that
appropriate checks and updates are made after the
simulation's configuration has been changed. Examples of
simulation configuration changes include the addition and
deletion of models, multibody system bodies and nodes etc.

Services such as data logging, check pointing, data peeking
and poking require the ability to interact with the disparate
models to access the data specific to each model. While
individual models provide APIs that allow users to interact
with their internal data, the Dshell++ simulation architecture
provides additional methods to access the overall data across
all the models in the simulation.

While models can have discrete and continuous states, the
latter require special handling since they are often coupled
with the multibody system's dynamics state. The continuous
states are propagated by numerical integrators such as
CVODE [22]. Since numerical integrators typically work
with contiguous memory blocks for states and state
derivatives, Dshell++ takes care of mapping the individual
model continuous state memory pools into contiguous
memory blocks for interfacing with integrators. This
bookkeeping is transparent to users and facilitates the use of
different types of numerical integrators within the simulation.

Due to the data-flow architecture, it is important that the
calling order sequence for the models is in accordance with
their connectivity, i.e. models whose outputs are connected to
the input of another model should be called before the
dependent model. Since manually ensuring this requirement
can be difficult and error prone once the number of models
and interconnects exceeds even a small number, the Dshell++
architecture provides model order sorting facilities that
process the model connectivity information to automatically
determine the proper calling sequence for the models. Often
times, the model inter-connectivity may result in connection
loops among the models. Dshell++ provides methods to
identify such loops and allow the user to define "breaks" in
the loops to assist the sorting process. Dshell++ also allows a
user to add extra dependencies into the sorting process over
and above those implied by the model inter-connections. The
model sorting process allows users to fairly easily build up

simulations with hundreds of inter-connected models while
enforcing the correct model calling order necessary for the
correct execution of the simulation.

The modular implementation and encapsulation of the
complex multibody dynamics model described above also
goes a long way towards reducing the apparent complexity of
the simulation by minimizing the coupling among the
component models and layers.

H. Python Interface

While the Dshell++ library is written in C++, an extensive
Python [6] scripting layer interface is also provided to its C++
classes and methods. The purpose of the Python interface is to
allow the user to initialize and configure the simulation
through a convenient scripting layer. The Python interface
provides access to virtually all of the C++ methods in the
Dshell++ classes. Indeed, the user has the option of setting up
and configuring the full simulation in C++ or to do so
entirely using Python commands (Fig. 5). A benefit of Python
is the vast collection of open-source Python extension
modules, e.g. socket programming, XML-RPC, and graphic
widgets etc. can be easily used to extend the simulation
capability in powerful ways.

The low-level Dshell++ classes are all written in C++ for

speed and execution efficiency. To generate the Python
interface, we use SWIG (A Simplified Wrapper and Interface
Generator) [15]. SWIG has the ability to generate a Python
interface given only the C++ header (.h) files. The output
from SWIG is a C++ file which is linked with the Dshell++
C++ libraries . Since SWIG only requires the declarations of
C or C++ functions and classes and not the source code,
SWIG can be used to generate the Python interfaces for third
party libraries whose source code may be unavailable. With
SWIG, a C++ program which calls Dshell++ can be rewritten
entirely in Python. Users will only need to be familiar with
Python to use Dshell++.

I. Graphical User Interface

While Python provides a command line interface for
accessing simulation variables, it also forms the basis for
auto-generating GUI panels to provide a more graphical and
user-friendly interface for the simulation data. Dshell++ uses
the GTK [17] widget family and its PyGTK Python binding
 [18] to build these graphical user interface panels at run-time
(Fig. 6). These panels are tailored to the specific content of

from Dshell.Dshell import DshellX
from Dutils import Dvar_Py
DshellObj = DshellX(); # create Dshell object
execfile(‘model.py’); # load models
Use Dvar to access the battery level parameter
batteryLevel =
 Dvar_Py.getDvar(‘.Spacecraft.DefaultSC.signals.batteryPowerLevel’)
print batteryLevel(); # display the battery level at time t=0
DshellObj.step(10); # advance simulation by 10 seconds
print batteryLevel();# display the battery level at time t=10

Fig. 5 Sample Python script to run a Dshell++ simulation.

SMC-IT 2009 Paper ID #16

5

the simulations being run. This is another example where
generic features that adapt to the specific simulation model
save the users the large cost and effort – and in this case the
effort of building graphical user interfaces for their
simulations. Additional support is available for creating strip
chart panels to display the time histories of user-selected
variables. These displays can be used to visualize the relative
timing and values of variables as the simulation proceeds.

J. Debugging

The Python interface also provides powerful run-time
methods to allow users to debug and tune simulations, such as
the ability to activate and deactivate models while the
simulation is running. This feature can be very useful for
isolating problematic behavior in complex simulations
involving tens or hundred of models. Another useful feature
is the support for controlling multiple verbosity levels of
debug messages. The verbosity of messages can be set to
different threshold levels to filter debugging messages,
warnings and errors. Moreover the fact that these settings can
be set individually for models allows limiting of messages to
just the relevant models and avoiding the torrent of messages
that might otherwise be generated across the whole
simulation. The built-in support for message sources and
sinks allows the user to print messages directly to the screen,
log to memory or to the file system for post processing.
Another important issue in complex simulations is that of
identifying and improving bottleneck models in a simulation.
The Python date/time methods can be used for model
profiling to collect the execution times of individual methods
at the model level. This feature can be exercised interactively
to identify areas of the simulation requiring additional tuning
in order to improve simulation performance.

III. SIMULATION DEVELOPMENT

A. Generating C++ Component Model Classes

To simplify building the C++ software for a component

model, Dshell++ uses Python scripts to auto-generate the C++
class code for such new Dshell++ models. While the
Dshell++ model base classes provide extensive functionality,
additional methods are required to define the specific states,
parameters and attributes of individual models. Much of this
boiler-plate code comes from auto-code generation (Fig. 7).

Dshell++ uses the Python ConfigObj module [20] to parse
Dshell++ model description (.mdl) files which describe the
specific interfaces for a model (Fig. 8). The ConfigObj
module provides classes to parse such data files. The
extracted contents are used to auto-generate C++ code using
the Cheetah [16] template-based code generator tool. The
generated C++ code for the Dshell++ model contains stubs
for the required methods for the model which the user can fill
in with the model-specific functionality. Thus, the
development of a new Dshell++ model reduces to one of
creating the model interface definition file, running auto-code
generator and then simply adding in a relatively small
amount of model specific code. The auto-generated classes
and code provide extensive functionality tailored to the model
from which the user is freed the burden of writing. The auto-
generation process is able to seamlessly handle changes to the
model description files and merge in the auto-code updates
with existing user defined code.

B. Assemblies

Since a simulation may contain hundreds of models,
organizing the models can be a complex task. To address this
issue Dshell++ implements an Assembly C++ class to build
the sub-systems (Fig. 9). Assembly objects are containers and
can contain models and even other assemblies. There can be
multiple instances of an Assembly class. For example, you
can instantiate four Wheel Assembly objects to represent the
wheels of a four-wheeled rover. Assemblies simplify
simulator design by allowing models and the complex
interconnections to be grouped as a single package. The
designer is then left with interconnecting assemblies together
instead of delving in the details of the individual models.

Fig. 7 Steps in building a Dshell++ model. You first create a model “.mdl”
text file which describes the model’s parameters, inputs and outputs. The
DshellAutoGen (a python script based on the Cheetah templating tool) is used
to create C++ .cc and .h skeleton code. You then edit the C++ files to add
functionality to the model. The SWIG [15] tool is used to autogenerate a
Python interface to the model. Finally, the C++ files are compiled to build a
shared library (.so) file which can be imported in a Python script or linked to a
C++ program.

Fig. 6 The Dshell++ graphical user interface is built around the GTK and
PyGTK graphics libraries and the Python scripting language.

SMC-IT 2009 Paper ID #16

6

C. Configuration Files

Dshell++’s initial parameters are specified through Python
scripts. The built-in support for object-oriented classes in
Python supports rapid-prototyping and evaluation of new
concepts directly in Python before migrating performance-
critical ones to C++ eventually. An example of this is the use
of Python extension methods in Dshell++ to process
configuration files with model information to instantiate and
build up the full simulation model. This process is much
simpler than the alternative procedural process for setting up
models. Moreover, the model configuration files are in
Python syntax and are hence able to take full advantage of the
Python interpreter's built in parser and its sophisticated error
checking. The Dshell++ configuration files effortlessly
support advanced features such as Python expressions,
conditionals and even procedures, for example:

‘SchackeltonCrater’: {
 ‘Latitude’: -1.5533, #radians
 ‘Longitude’: 3.7175, #radians
 ‘Body’: ‘Moon’,
 ‘SoilType’: ‘Compact_Sand’}

The advantage of using Python scripts is that parameters

can be computed dynamically at run-time. For example, to
specify the latitude/longitude in degrees instead of radians:

import math;
‘SchackeltonCrater’: {
 ‘Latitude’: math.radians(-89.0),
 ‘Longitude’: math.radians(213.0),
. ‘Body’: ‘Moon’,
 ‘SoilType’: ‘Compact_Sand’}

D. Signals

Dshell++ provides C++ base classes for hardware device
models. These models share data through “signals” (Fig. 2).

A model writes its output to one or more signals and reads
input from signals. A signal is essentially a C++ array in
memory. When a model writes to a signal, it writes to this
memory location where it is available for another model to
read. This shared memory paradigm allows a model to be
designed with no C++ dependencies on other models. Model
inputs and outputs are simple C++ pointers to the signal so
changing the source code of a model does not require
recompiling other models.

E. Dvar Interface

Several factors that go beyond model correctness and
performance are critical to the usability and scalability of
simulation architectures. The complexity of debugging,
testing and validating of simulations grows exponentially as
the number of component simulation models and their
interconnections grow. As a consequence, the sustainable use
of a simulation architecture for modest to large-size
simulations depends critically on the level of built-in features
that allow analysts and users to manage the growing
complexity. Thus, Dshell++ includes several simulation
features and services designed to meet these needs.

Since even modest scale simulations can involve thousands
of variables, one of the pressing usability needs is to provide
analysts with a way to peek and poke at simulation variables
at run-time. Dshell++ includes a very flexible framework-
level layer, called Dvar (Dshell variables), to support
querying and modifying virtually all simulation variables
interactively at run-time. Dshell++ implements Dvar C++
classes to represent the basic C types (float, short, bool,
double, int, long, enums), strings and arrays. Simulation
variables, such as those associated with component model
inputs/outputs, parameters/states, or with multibody model
states are organized into a Dvar namespace hierarchy. This
hierarchy forms the basis of an addressing scheme which
assigns to every variable a unique path-like string address in
the Dvar variable space. Dvar's C++ or the Python interface
can be used to locate and work with any variable in the
simulation at run-time. In this approach, a user has unlimited

Fig. 9 A Rover Assembly Diagram. Related models within subsystems (e.g. a
wheel motor, and surface contact model) can be grouped into a “wheel
assembly.” Assemblies are reusable and can be used in more than one
simulation. This allows complex simulations to be built by choosing and
connecting the desired assemblies together.

Fig. 8 Example of a model specification (.mdl) file. The user creates an .mdl
file (a text file) to describe a model’s inputs and outputs. For this example, the
model simulates a hardware Gyroscope which has two inputs: the angular
velocity (omega) and angular acceleration (accel). The output is an array of
three integers which hold the gyro counts.

SMC-IT 2009 Paper ID #16

7

access to variables and is not constrained to a pre-defined set
of variables. This is very powerful feature for debugging and
test sessions where even the finest grain details can be
monitored for debugging purposes.

Here’s a C++ example of how Dvar works:

static double mass; // this is the variable we want to register
Dvar::create(“mass”, &mass); // registers “mass”
//You can now access the variable through Dvar C++ methods
DvarDouble *p = Dvar::getDvarDouble(“mass”);
p->value(10.2); // sets mass = 10.2

The C++ variables can also be accessed in Python scripts

through Dvar:

Python code
import Dvar_Py;
Dvar_Py.getDvar(‘mass’)(10.2); # will set the C++ mass to 10.2

Conversely, one can create Dvar objects in Python to wrap

Python objects and access those Python objects through C++
code.

Dvar objects can be also organized into a tree-like nested
structure where a Dvar object can contain other Dvar objects.
Here’s a sample Dvar Python code to change the efficiency
parameter of a solar panel model attached to a space vehicle
named “Rover”:

import Dvar_Py;
Dvar_Py.getDvar(
 ‘.Spacecraft.Rover.models.SolarPanel.params.Efficiency’)(0.90);

F. Check Pointing

Since a Dvar tree can be saved to and read back from a file;
Dshell++ uses the Dvar interface to check point and resume
simulations. The check point function stores the full
simulation state to the file system. The simulation state can be
restored from such check point files. This allows users to
restart simulations from arbitrary points in long simulation
runs.

G. Events and Watch functions

The Dvar interface also supports a "watch" feature that
allows a user to register callback functions for selected Dvar
variables. The callbacks, which are functions written in either
Python or C++, are triggered any time the associated
variable's value changes. This allows the user to monitor
variables and trigger events only when something interesting
happens. Using Python scripts as the event and watch
handlers instead of C++ functions has the advantage of
allowing users to add or modify the handlers without the need
for recompiling the source code.

One of the key users of this feature is Dshell++'s interface
to its 3D graphics module called Dspace [21]. Watch handlers
are attached to the Dvar simulation variables associated with
the position and attitude variables for physical bodies in the
simulation. When their values change, the handlers are

triggered and send messages to Dspace to update the position
and location of the graphics objects in the scene to keep them
in sync with the simulation. Other uses of the watch feature
are for updating displays and data logging.

While watch variables are tied to Dvar variables, a separate
"events" module allows users to register callbacks that are
automatically invoked as the simulation time advances. The
rate of invocation can be set to be periodic with a user defined
frequency or can be configured to be triggered after a
specified delay.

H. Data Flow Visual Displays

The Graphviz [19] open-source library is used for auto-
generated visual displays of the Dshell++ model data-flows
and their interconnections (Fig. 10). Since these displays can
become very dense, Dshell++ allows the user to interactively
center the displays around any model and control the
"neighborhood" of models to be displayed. Such displays can
be used to verify that the models are interconnected properly
as well as to document the simulation design.

IV. APPLICATIONS

Dshell++ based simulations have been used on
workstations, in hardware-in-the-loop real-time simulations
for space mission simulators for orbiter/cruise spacecraft,
planetary surface rovers, entry-descent-landing simulators
and airship simulations. Some examples are presented below.

A. Surface Rover Vehicles

Dshell++ has been used to build the ROAMS [9] physics-
based, high fidelity simulator for planetary surface
exploration rover vehicles. Rover components such as a stereo
camera, navigation sensors and motor control are all modeled
using Dshell++.

B. Entry, Descent and Landing

EDL simulations for the Mars Phoenix Mars Lander [14]
are performed using the Dshell++-based Dsends [10]
simulator for maneuver targeting, landing dispersion analysis
and safety assessment. The simulation implements a 6-DOF

Fig. 10 A signal flow graph displaying the connections between models.

SMC-IT 2009 Paper ID #16

8

model of the entry trajectory, parachute deploy and lander
descent to the surface of Mars.

C. Manned Lunar Operations

The Lunar Surface Operations Simulator [12] has been
developed with Dshell++ to support planning and design of
future manned missions to the moon. Various lunar rovers,
habitats, dynamic and physical processes, and environment
systems are being modeled and simulated.

V. CONCLUSION

Dshell++ makes full use of object-oriented techniques to
allow code reuse and component building to minimize
development and maintenance costs. Performance-sensitive
code is written entirely in C++ and a Python scripting
interface is used for the simulation configuration and user
interaction. Python's object-oriented paradigm provides an
excellent match to the Dshell++ architecture and reduces new
development costs by allowing Dshell++ simulations to
interface with the huge number of off-the-shelf Python
libraries.

Future plans include adding a multi-rate scheduler to
support models which require high sampling rates, the ability
to run each model in a separate thread, and efficient data
loggers to capture results to a database.

VI. ACKNOWLEDGMENT

The authors would like to express their thanks for the
invaluable discussions with our team members at the Jet
Propulsion Laboratory’s Dynamics and Real-Time Simulation
Lab (DARTS Lab): J. (Bob) Balaram, Jonathan Cameron,
Rudranarayan Mukherjee, Hari Nayar, Marc Pomerantz,, and
Leonard Reder. Special thanks to Todd Litwin for reviewing
the paper. The research in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration.

REFERENCES
[1] G. Braun, D. Cornick, R. Stevenson, “Capabilities and Applications of the

Program to Optimize Simulated Trajectories (POST),” in NASA CR-2770,
Feb. 1977.

[2] Nemeth, S., “Hybrid Simulation Technology: The Next Step in the
Evolution of Spaceflight Simulations,” in SpaceOps 2008 Conference,
Heidelberg, Germany, May 2008.

[3] “Matlab/Simulink Web Site,” URL: http://www.mathworks.com.
[4] J. Biesiadecki, D. Henriquez, and A. Jain, “A reusable, real-time,

spacecraft dynamics simulator,” in 6th
 Digital Avionics Systems

Conference, Irvine, CA, Oct. 1997.
[5] SMP 2.0 Handbook, European Space Agency EGOS-SIM-GEN-TN-

0099, Oct. 2005.
[6] “The Python Programming Language,”. URL: http://www.python.org
[7] A. Jain, J. Guineau, C. Lim, W. Lincoln, M. Pomerantz, G. Sohl, R. Steele,

“Roams: Planetary surface rover simulation environment,” in
International Symposium on Artificial Intelligence, Robotics and

Automation in Space (i-SAIRAS 2003) Nara, Japan, May 2003.
[8] G. Rodriguez, K. Kreutz-Delgado, A. Jain, “A Spatial Operator Algebra

for Manipulator Modeling and Control,” in The International Journal of

Robotics Research, vol. 10, pp. 371-381, Aug. 1991.

[9] A. Jain, J. Balaram, J. Cameron, J. Guineau, C. Lim, M. Pomerantz, G.
Sohl, "Recent Developments in the ROAMS Planetary Rover Simulation
Environment" in IEEE 2004 Aerospace Conference, Big Sky, Montana,
March 2004.

[10] J. Balaram, R. Austin, P. Banerjee, T. Bentley, D. Henriquez, B. Martin,
E. McMahon, G. Sohl, "DSENDS - A High-Fidelity Dynamics and
Spacecraft Simulator for Entry, Descent and Surface Landing," in IEEE

2002 Aerospace Conference, Big Sky, Montana, March 2002.
[11] B. Wilcox, T. Litwin, J Biesiadecki, J. Matthews, M. Heverly, J. Morrison,

J. Townsend, N. Ahmed, A.Sirota, B. Cooper, “ATHLETE: A Cargo
Handling and Manipulation Robot for the Moon,” in Journal of Field

Robotics 24(5), April 2007.
[12] H. Nayar, J. Balaram, J. Cameron, A. Jain, C. Lim, R. Mukherjee, S.

Peters, M. Pomerantz, L. Reder, P. Shakkottai, S. Wall, “A Lunar Surface
Operations Simulator,” in Proc. International Conference on Simulation,

Modeling, and Programming for Autonomous Robots (SIMPAR 2008),
Venice, Italy, Nov. 2008.

[13] A. Jain and G. Man, “Real-time simulation of the Cassini spacecraft using
DARTS: functional capabilities and the spatial algebra algorithm,” in 5th

Annual Conference on Aerospace Computational Control, Jet Propulsion
Laboratory, Pasadena, CA Aug. 1992.

[14] E. Bonfiglio, D. Adams, L. Craig, D. Spencer, W. Strauss, F. Seelos, K.
Seelos, R. Arvidson, T. Heet, “Landing Site Dispersion Analysis and
Statistical Assessment for the Mars Phoenix Lander,” in AIAA/AAS

Astrodynamics Specialist Conference and Exhibit, Honolulu, Hawaii,
Aug. 2008.

[15] “A Simplified Wrapper and Interface Generator (SWIG),” URL:
http://www.swig.org

[16] “Cheetah, A Python-Powered Template Engine,” URL:
http://www.Cheetahtemplate.org

[17] “The GTK+ Project,” URL: http://www.gtk.org.
[18] “PyGTK: GTK+ for Python,” URL: http://www.pygtk.org.
[19] “Graphviz –Graph Visualization Software,” URL: http://www.graphiz.org
[20] M. Foord and N. Larosa, “ConfigObj,” in

http://www.voidspace.org.uk/python/index.shtml.
[21] M. Pomerantz, A. Jain, “Dspace: Real-Time 3D Visualization System for

Spacecraft Dynamics Simulation,” in SMC-IT 2009, Pasadena, CA, July
2009.

[22] A. Hindmarsh, R. Seran, “CVODE,” in
https://computation.llnl.gov/casc/sundials.

