
2004 IEEE Aerospace Conference Proceedings

Recent Developments in the ROAMS Planetary Rover Simulation
Environment

A. Jain, J. Balaram, J. Cameron, J. Guineau, C. Lim, M. Pornerantz, G. Soh1
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Drive, Pasadena, CA 91 109

Abstract ponents of the robotic vchicle mechanical subsystem, sen-
son, on-board control software, as well as the environment

This paper describes recent developments in the ROAMS and terraidvehicle interactions. ROAMS provides interfaces
physics-based simulator for planetary surface exploration to close many different rover control loops ranging from
rover vehicles. ROAMS includes models for various subsys- IOW level motor control, locomotion estimation and control,
tems and components of the vehicle including its mechani- to navigation and .,ision control loops shown in Figure 1.
cal subsystem, sensors. on-board resources, on-board control The ROAMS 'simulator is being used for stand-alone sim-
software, the terrain environment and terraidvehicle inter-
actions. The ROAMS simulator can be used in stand-alone
mode, for closed-loop simulation with on-board software or
for operator-in-the-loop simulations.

1 Introduction

There has been significant growth in the number of space
exploration missions devoted to planetary surface operation
using mobile rover vehicles, The Mars Exploration Rover
(MER) mission launched in 2003 and scheduled to land in
2004 is a prime example of such a current mission, with the
Mars Science Laboratory (MSL) representing the next gen-
eration of such surface exploration missions. Highlights of dation, closed-loop simulations with onboard software and
the MSL mission include significantly extended mission life for operator-in-the-loop simulations. ROAMS is also being
(over 18 months) and rover traverse distances for Mars sur- used to support the development, testing and maturation of
face exploration. new rover technologies for eventual infusion into missions

such as MSL and beyond.
The development and testing of onboard software for plane-
tary rovers has traditionally been done using rover hardware References [1,2] earlier reported on the key architectunl el-
platforms and testbeds. These hardware resources are ex- ements of ROAMS and provided a snapshot description of
pensive and typically over-subscribed. To alleviate this situ- its tionality. In this paper, we describe the further ca-
ation, validated modeling and simulation capabilities for sur- p s that have been developed in ROAMS as well as
face rovers are being developed in Rover Analysis, Model- preliminary validation results.
ing and Simulation (ROAMS) [l, 21 to support the mission
in canying out surface system trade studies, development of
new rover technologies, closed-loop development and test of
onboard flight software, and for use during mission opera-
tions.

Figure C1oSed-hJ interfaces to the

2 ROAMS Design Goals

ROAMS includes models for various subsystems and com-
We describe first some of the key design goals that are driv-
ing the ROAMS development. 0-7803-8155-6/04/$17.00 @ZW4 IEEE

0-7803-8155-6/04/$17.00 02004 IEEE 861

2.1 Validated Physics Bused Models

A primary requirement on ROAMS is that it serve as a high-
fidelity surrogate rover to support closed-loop testing beyond
what is possible with just hardware rover testbeds. These
high fidelity needs require ROAMS to implement (a) de-
tailed physics based models of the rover mechanical plat-
form including its kinematics and dynamics, (b) its suite of
actuators and sensors such as wheel & steering motors and
encoders, inertial measurement units OMUS), sun sensors,
cameras, and (c) models of the environment and the rover’s
interactions with the environment. Hand in hand with the
model development process is an ongoing ROAMS simula-
tor validation effort consisting of a series of experiments in-
volving deterministic as well as statistical comparisons with
physical rover data.

2.2 Model Configurabilitj

Development of the rover flight system typically involves
test platforms ranging from experimental technology devel-
opment rovers all the way to flight breadboards and spares.
The configuration of these platforms typically evolves over
time with updates to the sensor/actuator suite, avionics and
other hardware components. ROAMS is expected to provide
models that shadow these multiple rover platform confignra-
tions at any given time and track their evolution over time.
This requires that ROAMS avoid monolithic, rover platform
specific simulation implementations. Instead a conscious de-
sign strategy has been to allow users to configure ROAMS
for different rover models easily at run-time via model data
files. While allowing usen to easily tailor simulations to
the specific platforms, this configurability has been useful
during the simulation validation effort to match ROAMS to
rover model configurations used in the experiments.

2.3 Closed-Loop Simulations

As a test platform, ROAMS is meant to be used in closed-
loop with the onboard rover software and hardware. This re-
quires ROAMS to be embeddable within closed-loop testbed
environments containing a mix of onhoard software, real
hardware and simulated hardware. ROAMS provides hard-
ware like command and sensing interfaces similar to actual
hardware to allow such loop closure. Particular attention has
been paid to simulation algorithm performance in order to
meet the closed-loop timing requirements. Also, ROAMS
is portable across Unix and real-time VxWorks platforms.
The Dmex tool [l] provides auto-generated interfaces for
embedding ROAMS within a Matlab/Simulink environment
for control algorithm development and testing.

2.4 Layered Toolkir Approach

While simulations are expected to to the “right” thing, i.e.
provide good fidelity, they also need to provide a significant

level of instrumentation and other features for them to be
usable. Since the inclusion of these features adds to code
size and the number of external dependencies, ROAMS bas
adopted a layered design, where many of the features are im-
plemented as optional plug-in extensions so they can be in-
cluded as needed at run-time. This approach has also helped
increase the amount of reusable modules within ROAMS.

2.5 Spacecruji Simulation Framework

To accelerate the development of ROAMS, ROAMS is built
upon the existing DARTS & Dshell simulation framework
[3] developed for spacecraft simulations. This strategy has
allowed the ROAMS development effort to focus on the
extensions needed for the surface rover domain. Likewise
this has had the effect of making available these extensions
to other simulators sharing the same simulation infrastruc-
ture. A case in point here is the DSENDS entry, descent
and landing simulation tool [4] which uses the same DARTS
& Dshell simulation framework and shares several modules
with ROAMS including those for dynamics simulation and
terrain environment modeling.

Figure 2: Common Dshell simulation infrastructure
for ROAMS and DSENDS

2.6 Open source tools

Complementing our goal of using established spacecraft
simulation capabilities, we have placed emphasis on us-
ing and adapting open source software wherever possible.
This has led to the use of computational libraries such as
SWIFT++ [5]and ANN 161, visualization layers such as
Openhventor [7], POVRAY [8], ‘graphical user interface
tools such as Tk [9], Tix, Gtk [IO], Gnocl [I l l , TCL [91 &
SWIG [121 scripting interfaces, and documentation genera-
tion tools such as Doxygen [13] within ROAMS.

862

2.7 Usable

With the increase in detail and functionality of ROAMS, we
recognize the need to provide user interfaces to facilitate the
use of ROAMS and reduce the learning curve. While the
ROAMS core is implemented in C/C++, It includes a TCL
[91 scripting interface (auto-generated by the SWIG [I21
wrapper generation tool) to the core C/C++ classes to facil-
itate simulation configuration and regression testing. This
scripting capability is also used to develop graphical user
interfaces for users to change simulation modes, set rover
goals, change simulation speed. take time steps, exercise
rover degrees of freedom, select terrain models etc. The
Dspace 3D visualization toal [I] provides run-time visual-
ization of the rover simulation state.

3 ROAMS Models

In order to provide a high-fidelity virtual rover, ROAMS’
vehicle models include kinematics and dynamics algorithms
as well as models of its hardware components, models of
the rover environment including the terrain and the sun, and
interactions between the rover and its environment. To fa-
cilitate testing of the simulated rover, ROAMS also includes
representative models for software components such as nav-
igation, locomotion and motor control algorithms.

The sections below describe in more detail some of the re-
cent ROAMS model developments in the areas of camera im-
age synthesis, terrain models, wheel-soil interaction, plane-
tary ephemerides and sun camera models. Reference [l] de-
scribes previously developed ROAMS’ models of the rover
kinematics and dynamics as well of its hardware devices
such as inertial measurement units (MU), motors etc.

In addition to vehicle modeling, ROAMS must also model
the rover environment. As a surface vehicle, the rover in-
teracts with the environment primarily through the terrain.
Accurately modeling of this terrain and the contact forces
between it and the rover are the primary focus of environ-
mental modeling in ROAMS. In addition to physical char-
acteristics, ROAMS also provides an accurate graphical rep-
resentation of the ternin for presentation to onboard can-
era models. The relative position of the sun can he used to
generate realistic shadows and is computed using planetary
ephemeris information.

3. I Rover Model Definition

An important provision within ROAMS is a flexible model-
ing infrastructure that can handle multiple vehicle types and
configurations. ROAMS employs modular, hierarchical pa-
rameter templates to provide the flexibility needed to manage
rover simulations involving hundreds of parameters. These
template trees are constructed using the Tree TCL package
[141. Branches of the parameter tree are based on physical

rover sub-systems (i.e. arms, wheels, mast) and environment
(i.e. location, soil type, time of day). These parameters are
used to instantiate the run-time rover model.

At start-up, ROAMS constructs a parameter tree containing
default values along with text descriptions of each parameter.
When a pasicular rover type is loaded into ROAMS at run-
time, it inherits these defaults. However, the model can also
overload or modify any of the existing parameters. This is
required in order to specialize parameters such as kinemat-
ics, mass and inertia properties for a particular rover. This
ability to inherit and overload parameters has been useful
in allowing new parameters to be added to the ROAMS pa-
rameter tree without any changes to the vehicle models (un-
less the default value needs to be modified). It also allows
ROAMS to instance multiple rovers of the same or different
types with ease as well as to easily vary the rover parameters
for Monte Carlo simulations.

3.2 Terrain Modeling

An important consideration in rover simulation is modeling
the terrain upon which the vehicle moves. Being a surface
vehicle, the mver has intimate interaction with the terrain.
ROAMS provides a common interface for using digital ele-
vation map (DEM) terrain models created from a variety of
sources. These sources which can be generally categorized
as empirical, analytical or synthetic.

Empirical terrain models are representations of natural land-
scapes encountered in field tests during rover traverses.
These terrain models are useful for comparing physical and
simulated rover data for simulation validation as well as for
predictive purposes. The mechanism by which empirical ter-
rain data is collected ranges from manual measurement and
optical surveying to high-precision radar and laser scanning
techniques. In all cases, the data are collected from the actual
landscape under consideration and are later reconstructed to
generate a topography of the landscape.

Analytical terrain models are useful when specific surface to-
pography (eg. constant slope) is desired for simulating con-
trolled rover scenarios. Such terrain models can be generated
algorithmically using parameterized mathematical functions.
Using this analytical method, surfaces such as a precisely
controlled slope or a specific type of obstacle such as a bump
or a pothole may easily be generated with precise character-
istics.

Synthetic terrain models are useful in simulation scenarios
where statistically realistic planetary landscapes, eg. Mar-
tian landing sites, are required for the simulations. Synthetic
terrain generation algorithms [15,161 allow the user to spec-
ify general characteristics such as the range of rock sizes
and distribution densities, along with other features such as
craters. The terrains can be synthesized from scratch or can
be enhancements of lower resolution base terrains. These in-
put parameters for these terrain synthesis algorithms can be

863

varied to generate a range of terrain models for use in statis-
tical rover simulation studies.

for simulating antenna pointing and telecommunication up-
IinWdownlink link scenarios. In addition to planetary bodies,
SPICE can import spacecraft ephemeris in order to compute
the position of orbiting spacecraft relative to the rover.

3.3 Soil confacf modeling

The primary goal of the terrain interaction modeling in
ROAMS is to compute the forces and moments exerted by
the terrain on the vehicle. Given these forces, the resulting
motion of the rover is a well understood rigid multi-body
dynamics problem. ROAMS makes the simplifying assump-
tion that contact forces are applied at a single point for each
wheel and hence the applied moments from contact can be
regarded zero. The force at the contact point for each wheel
is decomposed into normal and tangent components. The
normal direction is defined as perpendicular to the terrain
at the contact point. ROAMS uses a non-linear compliance
system to compute the force in the normal direction. As
the rover sinks into the terrain, the compliance system in-
creases the normal force until equililirium is reached. This
allows ROAMS to solve for the statically indeterminate nor-
mal forces. The magnitude of the normal force serves as the
foundation for almost every contact model.

Once the normal force has been computed, the forces in
the tangent plane can be computed. ROAMS employs a
two-dimensional compliance system described in [17]. Pre-
viously, ROAMS used a simple Coulomb friction law to
compute the maximum allowable tangent force (IlF~ll 5
p l [F ~ l [) . This has been updated to limit tangent force based
on the soil mechanics parameters of internal friction angle
(4) and soil cohesion (e) . These parameters provide a more
accurate representation of the transition between rolling and
sliding behavior in soil. Maximum tangent forces are now
given as:

IlF~ll I CA, + IIFNIltan4

where A, is the area of the wheellsoil contact patch.
ROAMS currently uses heuristic techniques for computing
the area of the contact patch. These heuristics will be re-
placed by more accurate modeling based on terra-mechanics
equations [is].

3.4 Ephemeris Interface

Another new feature of ROAMS is an interface to the SPICE
software package [191. The SPICE package provides a pow-
erful, extensible database of ephemeris information for all
major bodies in the solar system. Sun position relative to the
rover can he computed at any time and for any location on
the surface of Earth or Mars. The sun position in the sky
is used by several models including the sun-sensor and sun
camera models, the solar panel model, and in the future will
he used for the accurate generation of shadows for camera
image synthesis. ROAMS provides the sun position infor-
mation to Dspace to generate a graphical image of the sun
for simulating a sun camera image. The SPICE interface
also allows the computation of relative planetay positions

3.5 Camera Image Synthesis

Camera image synthesis is an important new capability cur-
rently under development within ROAMS. Simulation of
stereo camera images allows ROAMS to close the loop with
the stereo pipeline in the onboard software. The stereo
pipeline is used for generating range maps for the onboard
hazard detection and rover navigation algorithms. These im-
ages can also be used for visual odomehy and visual tracking
applications. We describe here the current status of our cam-
era image synthesis work while it remains an active area for
both development and validation.

CAHVORE Camera Models - The basic camera model in
use for robotic vehicles used in Mars planetary exploration
was originally developed by Yakimovskly and Cunningham
[20,21]. This model included a central perspective pro-
jection and an arbitrary affine transformation in the image
plane. Since then this model has been extended to include ra-
dial lens distortion [22] and representation of entrance pupils
suitable for use with fish-eye type lenses [23]. The basic
camera parameter in these models consist of C - the Center
Vector of the entrance pupil, A - the Axis Vector normal to
the image plane, H -the Horizontal Vector for the image, V -
the Vertical Vector for the image, 0 - the Optical Vector that
is the symmetry axis for radial distortion, R - Radial Distor-
tion polynomial coefficients, and E - Entrance Pupil polyno-
mial coefficient terms. Together these CAHVORE parame-
ters (1 8 for the CAHVOR portion) allow modeling of a wide
variety of optical system including lenses with wide field-of-
views and fish-eye distortions. Rigorous least square proce-
dures exist for estimating the values of all of the CAHVORE
parameters.

Image Synfhesis using Dspace - Currently the ROAMS simu-
lated camera models take into account only the CAHV cam-
era parameters while the simulation of the radial and fish-eye
distortion effects is planned for the near fumre. ROAMS uti-
lizes the Dspace 3D visualization tool to synthesize stereo
image pairs for the various hazard cameras (hazcams) and
panaromic cameras (pancams) on the rover. To perform im-
age synthesis, Dspace uses its list of 3D visualization graph-
ical objects such as DEM based terrains, associated textures,
CAD file representations for all rovers in the simulation, the
position of the Sun and other light sources, in combination
with camera parameters derived from the CAHV parameters
for each of the left and right stereo cameras, to render images
for processing by stereo correlation code.

For each simulated camera, position and attitude information
for the camera is passed to Dspace by ROAMS, along with
the field of view and resolution (in pixels) for the camera.
Since the camera’s optical axis may not be perfectly centered

864

in the image plane, Dspace renders an image larger than the
resolution of the camera and then extracts the camera image
region from about the optical center to produce the final ren-
dered image. This over-rendering is required because Open-
InventodOpenGL cameras do not support off-center bore-
site rendering. Currently, depth-of-field calculations are not
supported. When camera image rendering is complete, that
image is converted to a 8 bit greyscale image for further pro-
cessing. Dspace performs the camera rendering in an “off-
screen” mode. Figure 3 shows an example synthetic stereo
image pair generated by ROAMS.

Figure 3: Synthetic stereo camera image pair

We have used a C++ Stereo Vision libraq [24] developed
at JPL to verify that range map information can be success-
fully extracted from the synthetic images. Figure 4 shows
the resulting range map generated for the stereo image pair
in Figure 3. The upper left and right images are color coded

Figure 4: Range map from the synthetic stereo camera
image pair

representations bf the the distance and height for each point
in the range map. The bottom image shows a top down view
of the range map where the dark areas in the middle are the
“holes” in the range map due to occlusion of the area by the
rocks. The Stereo Vision library is flexible in the image input
format and can process 8 bit grey-scale and color pixels (up
to 96-bits of precision) if greater accuracy is desired. Using
a CAHVOR camera model as input, the Stereo Vision code

compares the camera images to produce a single “disparity”
image from which a range map (three-dimensional distance
of each pixel from the camera) is computed. We have been
using this stereo code to test and validate the synthetic cam-
era images being generated by ROAMS.

4 ROAMS Validation

In order for a rover simulation to be useful in developing
rover navigation and control software, its behavior must cor-
respond well with the operation of a real physical rover
in a real environment. Hence, in parallel with the ongo-
ing development of ROAMS, we have been undertaking a
validation effort for ROAMS using experimental data from
rover mobility tuns. Our validation strategy has two tracks.
One track is pursuing deterministic validation for parts of
the system that are deterministic (eg. the rover hardware
model). Another track is using statistical matching for the
non-deterministic or difficult to characterize pans of the sys-
tem (eg. wheel slippage). Deterministic comparisons he-
tween simulated and experimental data is difficult due to the
uncertainty in environment models and the inherent com-
plexity in creating them.

The motion of a rover over a planetary terrain is a product
of many different components and levels of the system. At
the lowest level. there are rover rockers and bogeys (suspen-
sion components), wheels, actuators (motors), and sensors.
External influences, such as the temain shape and properties,
are also a critical factor in the rover motion. A key goal of
our ROAMS validation effort is to validate the rover motion
at various levels of operation. We are validating the opera-
tion of actuator and other individual component models. It
is important to establish good correspondence for the lower
loops in the system between the simulation and physical ex-
periments, since they serve as the foundation for the system
level behavior of the system. We also examine the overall
motion of the simulated rover to validate the higher level
navigation loops in the system.

The level of detail needed in the individual component mod-
els for adequate simulation fidelity is intimately driven by the
rover’s operational parameters, i.e. rover speed, terrain slope
and roughness, onboard sensors etc. One of our goals in
the validation activity is to develop benchmarks and guide-
lines in this area. To this end, we are carrying out a series
of validation experiments which analyze the performance of
individual components as well as the overall system while
traversing controlled, easily modeled surfaces. The follow-
ing section describes the results from these experiments. Our
eventual goal is to validate simulated traverses over natural
terrains. However, such validation requires accurate models
of the terrain, and Section 4.2 describes our current work on
terrain model reconstruction.

865

4.1 Vehicle model validation on controlled surfaces

Our first rover model validation experiments included driv-
ing a rover straight on a Hat surface. We used these early
experiments to check out the wheel radius parameters and
improve our motor and gear train models for the wheels and
steering motors.

Rockys ruver driving in a 0.5 meter circular arc - We per-
formed an experiment of driving the Rocky8 [25] rover in
a 45 degree circular arc of 0.5 meters radius on a Hat sur-
face in the JPL Mars Yard [26]. The Mars Yard is an area
with rocks and surface materials that are representative of
Martian surfaces. The purpose of the experiment was to val-
idate the wheel and steering motor control models associated
with making a turn and the IMU model. During the turn, the
average wheel angle deviations at the end of the turn was ap-
proximately 2.1% as shown in Figure 5. Figure 6 shows the
steering angle profile whose the average deviation was 0.9%.
During the time the rover chassis was rotating, the M U rate
deviation between the experimental and simulation data was
about 4% as shown in Figure 7.

Figure 5: Front wheel angles during Rocky8 circular arc

In summary, this experiment showed excellent agreement
on Rocky8 steering kinematics, wheellsteering motions, and
gyro response. We were unable to compare actual vehicle
motion because the physical positions were not measured
during the experiments.

Fido mver driving up a ramp - We subsequently performed
an experiment driving the Fido rover [25] from a Hat sur-
face up a 13.4 degree slope. The rover went a total of 230
cm, including about 65cm on the flat surface before the front
wheels touched the ramp. In this experiment we were able to
accurately measure the position of the rover at the beginning
and ends of the motion using a TotalStation. The purpose of
this experiment was to validate rover kinematics, dynamics,
and wheel slippage models over a non-flat terrain. In this ex-
periment, the wheel angle deviation at the end of the run was

m w

Figure 7: IMU Z rotation during Rocky8 circular arc

5% or less. The deviation in the total distance moved was
1.6% based on the TotalStation measurements.

This was the first experiment that included significant
rockerbogey motions. Since the rover contacted the ramp
straight on, the rocker angles should he small since they mea-
sure the relative rotation between the rockers on the two sides
The deviation of the bogey angles was about 27.1% and the
left bogey and 30.4% for the right bogey and is shown in
Figure 8.

Various data-collection and calibration problems prevented
us from analyzing IMU operation during the experiment.

This experiment also allowed us to do some rough analysis
of the traction of the wheels on the ramp surface (which was
covered with a plywood board). We did a series of simula-
tions that varied the coefficient of friction between the wheel
and the tamp surface. We obtained a good match the actual
motion with a coefficient of friction of 0.6 as seen in Figure
9.

866

ram 1st

Figure 8: Rocker and bogey angles for Fido rover driv-
ing up a ramp

a m
7M. *I

Figure 9 Forward motion for various wheel-surface
coefficients of friction

In summary, this experiment shows good agreement on
wheel angles and actual overall rover motion. It allowed us
to estimate the coefficient of friction between the wheels and
the ramp. There was moderately good agreement between
real and simulated bogey angles. Some of the discrepancy
between real and simulated bogey angles may be due to cal-
ibration problems on the Fido rover and needs further inves-
tigation.

4.2 Empirical Terrain Reconstruction

In more interesting scenarios, the rover will drive over natu-
ral terrains which are not geometrically simple surfaces. Dif-
ferent wheels can encounter different rocks at different times
and produce complex motions. In order to validate rover
simulations in realistic situations, it is clear that an accurate
representation of the terrain surface and traction properties
is essential. This section provides an overview of an empir-

ical terrain topography reconstruction process we have been
developing at JPL's Mars Yard.

The Laser Scanner - The scan of the Mars Yard was done us-
ing a high-end laser scanning device, the LMS-2360, man-
ufactured by Riegl Laser Measurement Systems. The LMS-
2360 is a laserlmirror scanning device that utilizes a fixed
laser beam and a rotating deflection mirror, mounted within
a rotating pedestal. This configuration allows the user to ob-
tain a panoramic range map of the environment surround-
ing the scanner. The device uses the time of flight (TOO of
a pulsed laser beam to determine range information, while
precisely controlling the rotation angle of the mirror to ef-
fect a vertical scan range of approximately +I- 45 degrees
from horizontal. This provides a precisely controlled verti-
cal sweep of range measurement locations.

.
Rotnting mirror . .

Objed (eg. d) L a w pllse &
detector

i . . , , . . , - >- - ...

Figure 10: Laser Mechanism

Figure 10 shows a simple schematic diagram of this mech-
anism. The entire laserlmirror unit is then rotated about it's
vertical axis to provide the horizontal sweep, generating a
panoramic set of vertical scans centered about the scanner's
position. The scanner unit itself is mounted on a tripod to
provide portability. This also gives it a vertical elevation cen-
terline from the ground on the order of about 1-1.5 meters.

The manufacturer claims the best-case resolution of the
range data to be 5mm, with a 1 sigma std dev accuracy of
+/-12mm. Angular resolution for both the vertical and hori-
zontal sweeps is specified at a minimum of 0.01 degrees. The
software allows selection of various modes of operation, an-
gular scan limits and resolution as well as selecting the focal
point of the laser beam. The various quality settings have a
large impact on the time it takes to scan an area as well as
the volume of data collected.

Scanner Output - The output produced from the LMS-2360
software consists of an ASCII file containing data for each
individual laser range measurement and a set of three bitmap
images: a range image, an intensity image and a true-color
image. Each pixel in the image corresponds to an individual
laser measurement point, which in turn corresponds to an en-

867

try in the ASCII data file. The ASCII data file consists of one
line for each point containing a user-selectable set of data for
that point. In this experiment the software was configured to
output the (X, Y, Z) coordinate of each sample along with a
laser reflection intensity value. The coordinate of each point
is in a scanner-relative frame of reference where the scanner
is at the origin. This X, Y, Z representation of the scanner
data is a point cloud of individual points in 3D space but con-
tains no explicit surface information (i.e. no correlation as to
which points are part of the same objects surface.) When
plotted on a computer with a 3D viewer (for example as a
VRML file), the human eye can easily distinguish the orig-
inal scene as long as sufficiently high resolution was used
when collecting the data as shown in Figure 11.

Figure 11: Sample point cloud generated by the scanner

4.3 Scan procedure

By nature, laser is a line-of-sight mechanism and can there-
fore only produce range data (i.e. reflections) from surfaces
that are reasonably normal to, and lie along, the path of
the laser beam. However just as when shining a flashlight
against a tree or a rock, a shadow is cast behind the object.
In the case of a laser scan, there will be no range information
obtained in these shadow areas. This effect can be seen in
Figure 12 where the laser scan is coming from the left side
of the image. As a result, the scanner data collection must be
done from several strategic vantage points for full coverage
of the terrain, and each scanner position must then be merged
into a single dataset. For example, 4 separate scans, one from
each of the front, back, left and right “sides” of the area un-
der consideration may be needed. This will insure coverage
of all sides of objects such as rocks, terrain undulations and
other markers. When the multiple scans are later merged,
the resulting 3D topology may be viewed from virmally any

Figure 12: Laser shadows behind rocks

angle covered by the collective scanner perspectives

In order to register and correctly merge the multiple scan
data sets, a number of fiducials - or fixed-place markers -
visible to the I se r from each of the scanner orientations are
used. The fiducials are generally small, highly reflective tar-
gets placed at precisely known locations. In Figure 13, a

.

Figure 13: Mars Yard scan setup

fiducial is placed at each comer of the Mars Yard and has
been precisely surveyed using a Totalstation. The reflec-
tive targets produce bright, well-defined reflections (spikes)
in the laser intensity data. We created utilities to post-process
the intensity image data and automatically locate the posi-
tions of the reflectors relative to the scanner location.

In this experiment, we also placed several standard patio
bricks at various points in the terrain and measured their

868

precise locations. These “markers” were used later to mea-
sure the accuracy of the reconstructed terrain. The layoul
of the scanner positions and bricks is shown in Figure 13.
The green squares are bricks and the blue circles are scan
positions. The laser target detection software annotates the
intensity image as shown in Figure 14, and outputs an ASCII

Figure 14: Annotated laser scanner image

table of coordinates for the location and dimensions of each
reflector as well as a 3D laser intensity surface plot, which
is useful for visualizing the quality of the scan data of each
reflector as show in Figure 15.

4.4 Registering and Merging the Scan Data Sets

Using the known absolute locations of the reflector fidu-
cials in together with their scanner-relative locations in the
scanned data, one can construct a transformation matrix for
each scanner position. Using this transformation matrix, the
point clouds for each scanner position can then be translated
and rotated so as to register each individual scanner-centric
coordinate frame into a common reference frame (which is
typically the frame of the fixed fiducials.) Again, we created

.. *., ... -

Figure 15: Reconstructed surface of a reflector

ner positions into a single dataset. This software can provide
false coloring of the point clouds from each scan position.
The idea being that the merged scans from multiple strategic
vantage points will fill-in the distant low-density areas from
scans taken further away. We can see from the merged, color
coded point cloud in Figure 16 color-coded scans where each

Figure 16: Merged, color-coded scans

utilities to automate this process and produce a set of ASCII
point cloud files in one (Mars Yard) frame of reference. The
accuracy with which the location of the fiducials are known scan Position Was taken from (e.g. grm=left, red=top etc.),
along with the accuracy and resolution of the scanned data and how each local scan filled in missing data from the dis-
determine to a large extent the accuracy of the registration tant Scans across the Mars Yard. When plotted in a 3D
of the point clouds, and therefore the fidelity of the recon- viewer, the colorized point clouds reveal a great deal of in-
structed terrain. formation as to the contribution of each scan position to the

overall dataset. Figure 17’s shows a close up view of the
Another utility then merges the multiple co-registered scan- false coloring of the merged data.

869

Figure 17: Close-up view of the color-coded merged
scans

4.5 Su~ace Reconstruction

There are many factors that contribute to the actual resolu-
tion and accuracy of the data obtained from a laser scanner.
In the LMS-Z360 the laser beam emanates from a fixed point
in space and is then deflected, by mirror angle and device ro-
tation angle, to a target sample vector. This geometry results
in an angular separation of adjacent scanned points that in-
creases with the distance from the scanner: the further away
from the scanner a surface is, the lower the effective reso-
lution of the scanned image at that surface. In other words,
scanner resolution decreases as distance from the scanner in-
creases, resulting in a variable resolution of scanned data. It
is therefore important to consider the number and position of
each scanner location such that distant objects receive ade-
quate coverage to faithfully represent the surface. For exam-
ple, with the scanner set to a vertical and horizontal angular
rotation step of 0.05 degrees (a medium-high resolution set-
ting for the 2360). a vertical surface 2 meters away will see
an effective coverage of about 1 . 7 d p o i n t whereas a ver-
tical surface 20 meters away will see an effective resolution
of about 17.5mdpoint - 1/10 the coverage! This effect is
illustrated in Figure 18.

Applying the same reasoning to a horizontal surface (e.g. the
ground) with the scanner mounted 1 meter off the ground,
the difference in resolution goes from a about 3mdpoint at
2 meters away to over 30mdpoint at 20 meters from the
scanner! When scanning large areas such as the JF’L Mars
Yard (which is approximately 20x20 meters in size), this ef-
fect must be taken account and additional scanner positions
must be considered to maintain a minimum level of scanner
coverage. When looking at the point cloud of a single scan-
ner position, this effect is very pronounced as can be seen
in Figure 19. In this top view illustration, the scanner is in

.

i d=Dtan(theta)

.

Figure 18: Angular separation effect on resolution

the upper-left comer, where one can see a very dense point
distribution, but by the time you get to the lower-right cor-
ner, only 4 or 5 meters away, the degradation in resolution
coverage along the ground is already quite apparent.

A second significant factor to consider when using a laser
scanner instrument such as the LMS-Z360 is the actual di-
ameter of the laser beam itself, and the response timing ca-
pabilities of the receiving electronics. For the LMS-Z360,
the laser beam is under software focus control, and can be
focused from 2 meters to infinity. According to the man-
ufacturers specifications, at 2m focus the beam diameter is
approximately 5mm. while at 10m focus, the beam diameter
is approximately 22mm. Given the above described impli-
cations of angular separation effects on resolution, consider
that at IO meters there is an effective resolution of about
9mdpoint and a beam diameter of 22mm. This means that
the laser beam will overlap each adjacent scan point, provid-
ing a level of uncertainty in the exact location of the detected
reflection.

In addition, when the beam hits the edge of an object (for
example a flat-edged rock or a brick “marker”), the beam
will be “split.” Part of the beam will reflect from the brick’s
surface, the other part of the beam will continue on past the
brick and reHect from whatever it happens to hit along it’s
path beyond the brick. The effect is that the scanner will
see multiple reflections from a single laser pulse. If those
reflections fall within the pulse timing detection window of
the receiver, the scanner will not be able to resolve the dif-
ference. The LMZ-Z360 allows the user to select either the
‘‘first return” or the “last return” to resolve this ambiguity in
choosing the range value from the multiple reflections. This
beam splitting effect is very pronounced in terrains with ob-
jects having sharp edges (such as the bricks used for val-
idation of the scan registration) and in fact is a source of
great distortion in the reconstructed terrain that must be til-
tered out to retain the fidelity of the original landscape. This

870

Figure 19: Decrease in scan point density with distance

beam-splitting effect can he seen in Figure 20. Here is a side

Figure 20: Shroud effect from brick beam splitting

view of a brick, scanned from several meters away with the
beam focus set to infinity. You can actually trace the angle of
the “shroud” of sample over-spray back to the original scan-
ner location. Given the beam diameter overlap with apparent
resolution coverage that varies with distance, the best choice
between first or last response is not always clear. In addition,
the reflective qualities of the actual material being scanned
will affect the intensity of the reflections (and components
of split reflections) so as to potentially trick the thresholding
of the laser response detection sensor circuitty, adding fur-
ther “noise” to the measurements. By controlling the beam
focus and taking banded, limited-range scans (by limiting

the vertical sweep angles to cover a small concentric radius
about the scanner’s position) you can achieve significantly
better results as shown in Figure 21. Of course, this requires

Figure 21: Reduction in shroud effect with improved
beam focus

a many more extensive scans, with a significant increase in
the amount of post-processing of the data.

Again we wrote utilities to perform further filtering of the
point clouds, which removed most of the beam splitting ar-
tifacts, but at the cost of some lost information. The filter-
ing algorithm passes a cube of configurable size (e.g. lcm)
throughout the entire 3 0 temain dataset and simply deletes
all points within the cube if the density of points is helow
some specified threshold. This type of filtering must be per-
formed on the final, merged datasets to prevent it from delet-
ing entire valid, low-density regions of a single scan position
that are far from the scanner location (i.e. due to the resolu-
tion degradation effects described previously.)

More work is needed in separating out the features (rocks,
bricks etc) from the base terrain to retain detail in the ren-
dered image. An example of a 12m x 14m patch of Mars
Yard, as a 3D mesh an he seen in Figure 22 as a VRML
mesh.

Surface Texture - Another step in the reconstruction process
makes use of the true-color image generated by the LMS-
2360 software. Using the same transformations of each scan
position, and a simple 3D to 2D projection algorithm, the
true-color panorama images can be merged and converted
into a texture overlay for the terrain data. Some image pro-
cessing to adjust gamma, brightness and contrast provides a
realistic looking terrain for rover simulation - Figure 23. In
this view, it is possible to see the effects of each scan po-
sition as the subtle radial shadows emanating from each of
the 4 scanner positions. Some image processing was done
to compensate for this, but the effects could not be elimi-
nated completely. Additional, more closely spaced scanner
positions will likely make a significant improvements here.

871

Figure 22: Reconstructed Mars Yard terrain mesh

In the final analysis, our validation analysis showed the re-
constructed terrain to be mostly within 1 cm accuracy, with a
worst-case of less than 2cm error. This is well within the ex-
pected limitations of the scanner for the scanner modes used
for the data collection. Future terrain reconstruction experi-
ments will make use of the lessons learned here to improve
the quality and accuracy of the reconstructed terrain.

5 Closed-Loop Simulations

In stand-alone simulation mode, a user normally interacts
with ROAMS through a comprehensive G U S (shown in Fig-
ure 24), for simulation configuration, control and visualiza-
tion. The majority of the simulator is written in C++, with
scripting interfaces (e.g. TCL) exposed at key points in the
architecture. In order for an external application to close
the loop with ROAMS, a light-weight set of C++ interface
classes, denoted RoamsIF, has been developed to provide
programmatic access to initialize, configure and interact with
the simulator.

5. I Overview of Roamslf

Using RoamsIF, an application can gain complete control of
the ROAMS simulator at all levels. RoamsIF provides two
C++ classes with which a users application program can in-
teract with ROAMS.

The primary class, RoamsIF, provides methods for simula-
tion configuration and control as well as various utility meth-

Figure 23: Texture image for the Mars Yard terrain

ods for timer callbacks and terrain selection. For example,
RoamsIF exposes methods for selecting the state propaga-
tion mode (e.g. kinematics or dynamics), methods for adding
new rover vehicles to the simulation and methods for con-
trolling the simulation clock and advancement of time. The
application program can then step the simulation one step at
a time, or it can advance the simulation to some point into
the future.

The second class is the RoverIF class. For each new rover
that is added to the simulation, a RoverIF object is created
for the rover. The RoverIF class provides methods for ac-
cessing rover-specific information and settings. RoverIF has
methods for selecting high-level configurations such as the
navigation algorithm to use (or no navigation at all), and
for specifying the rover’s position and navigation goal loca-
tion. RoverIF also provides low-level command access to the
rover’s underlying subsystems, such as it’s wheel and steer-
ing motors. Using these methods, the application software
can control the rover’s movement at the individual wheel
motor level by commanding motion profiles (e.g. maximum
acceleration, coast velocity and final desired position).

Both RoamsIF and RoverIF provide access to a wealth of
simulation parameters and run-time variables. This enables
the application to tune the behavior of the simulation and the
simulated rover vehicles, as well as to monitor and log out-
put from the rover’s simulated sensor devices (e.g. a wheel
position encoder, or the outputs of a gyro).

The RoamsIF interface is continuing to evolve as do the sim-
ulator and the users needs. A recent addition to RoamsIF

872

Figure 2 4 ROAMS’ graphical user interface

has been the addition of a “takePicture” methods to generate
synthetic images from ROAMS hazcam and pancam cam-
era models. The RoamsIF interface is currently in use by
JPL‘s Mission Data System [27] and CLARAty [25] projects
for closed loop rover simulations with ROAMS. We plan to
convert the current ROAMS closed-loop interface to NASA
Ames’ Mission Simulation Framework [28] to RoamsIF in
the near future.

6 Rover 3D Visualization Models

proach however turns out to be impractical when used with
ROAMS which is meant to handle a whole variety of existing
and new rover models. The primary bottleneck is the lahor-
intensive process for generating the rover graphics model for
new rovers to he used in simulations. Moreover, keeping
such models in sync with parameter updates and changes to
the kinematics and geometric configuration of the rover has
to be manually done and is difficult in the hest of circum-
stances. Due to these difficulties, the graphics models can
get out of sync with the underlying physics based model and
can be a source of confusion for users who may rely on the
graphics feedback to interpret and monitor simulation behav-
ior.

We have recently developed a strategy to address these is-
sues. We have created a utility within ROAMS that can
auto-generate a VRML “stick” graphics model for the rover
from the the rover’s kinematics data. The “stick” mnemonic
for this model reflects the fact that this graphics model only
contains the backbone information from the rover model and
is exactly faithful to the underlying kinematics of the rover.
Thus the location and orientation of all attachment nodes,
articulation hinges, body center of mass etc. are included in
the graphics model. Some simple wheel and chassis graph-
ics objects are attached to the backbone to generate a rea-
sonable representation of the rover. The left image in Fig-
ure 25 shows an example of such a stick graphics model.

ROAMS uses the Dspace 3D graphics tool for visualizing
simulation output [I] . Dspace displays include graphics
models of the rover, the terrain environment as well as graph-
ics “ornaments” to annotate and highlight simulation state
such as trails, field of view displays, frame axes etc. The
graphical terrain models are auto-generated from the under-
lying terrain DEM at run-time so that they are always con-
sistent with the simulation model of the terrain.

In the case of rover models, corresponding CAD like graph-
ical models of the rover are needed to visualize the rover
behavior during simulations. Unfortunately, even when they
are available, CAD based graphics models are typically un-
suitable for use in closed-loop simulations. For one, these
models are often far too detailed and when used in real-
time they significantly impact the performance of the sim-
ulation. Secondly, the instrumentation needed to display the
rover articulation is absent from CAD models. As a result,
such models in the past have required labor-intensive pro-
cessing to either simplify the models and add the articulation
information in, or to simply create the needed rover graph-
ics model from scratch. While technically possible, this ap-

Figure 25: Stick and Xmas rover graphics models

The key benefits of the stick graphics model are that it is
auto-generated and hence does not require any manual effort,
and that it is always consistent with the underlying physical
model of the rover. This model can he generated for any
rover - including conceptual ones used for analysis of new
rover designs.

The one drawback - though not a serious one - of the stick
model is that it lacks geometrical information and while
kinematically accurate may lack the intuitive look of the
physical rover. To address this concern, we have taken the
stick model one step further, where a user can attach graph-
ics components for the various parts of the rover (eg. the
rockers, the bogeys, the chassis etc.) to the backbone. We
refer to the resulting model as the “Xmas tree” model since
the process mimics one of adding ornaments to a Christmas
tree. The right image in Figure 25 contains an example of the
Xmas tree version of the stick figure in the left image. When
generating the Xmas tree model, the user is able to scale,

873

position, rotate the individual graphics parts as needed. We
have found the combination of the stick and Xmas tree mod-
els generation capability to be very valuable since it allows
users to use arbitrary rover designs in the simulation and
have a good visualization capability right away to accom-
pany the simulations. In any case, when CAD like models
for specific rovers are available, users have the option of us-
ing them instead of the stick or Xmas models.

I Conclusions

This paper contains an overview of new ROAMS capabili-
ties developed beyond what was previously reported in ref-
erence [l]. While continuing the addition of new model-
ing functionality such as synthetic stereo camera simulation
models, there has been a parallel validation effort to validate
the ROAMS models. The target user for these ROAMS de-
velopments is NASA's Mars Science Laboratory mission.

Acknowledgments

The research described in this paper was performed at the Jet
Propulsion Laboratory (JPL), California Institute of Tech-
nology, under contract with the National Aeronautics and
Space Administration. We would also like to acknowl-
edge the NASA's Mars Technology Program's support of the
ROAMS development.

Biographies

Dr. J. (Bob) Balaram is Principal Mem-
ber of Technical Staff at the NASA Jet
Propulsion Laboratory where he is with
the Mobility Systems Concepts Devel-
opment Section. He received his Ph. D.
in Computer and Systems Engineering
from Rensselaer Polytechnic Institute.
At JPL he has been active in the area
of telerobotics technology development
for Mars Rovers, planetary balloon aer-
obot systems, and multi-mission, high-
fidelity Spacecraft simulators for Entry,
Descent and Landing and Surface Mo-
bility.

Dr. Jonathan Cameron received his B.S.
degree in Mechanical Engineering in 1979
received his B.S. degree in Me-
chanical Engineering in 1979 and
his M.S. in Engineering Science
and Mechanics in 1980, both at
Georgia Institute of Technology.
In 1981, he was employed by
Jet Propulsion Laboratory (JPL) in
Pasadena, California, where he was
involved in spacecraft and ground vehicle control research

including path planning for robotic vehicles. He completed
his Ph.D in 1993 in Mechanical Engineering at Georgia In-
stitute of Technology under the direction of Professor Wayne
J. Book. From then until 1995, he was employed by the
College of Computing at Georgia Tech to work with Prof.
Ronald Arkin as a research scientist investigating multiagent
robotics. In July of 1995, he returned to JPL and is now a
member of the Automation and Control section where he is
working on several advanced space exploration concepts and
modeling and simulation of rovers. His research interests in-
clude robotics, dynamics, kinematics, controls, and software
development.

John Guineau has over 20 years of experience develop-
ing software in the commercial and government sectors.
His skills range from low-level
embedded hardware design
and firmware development to
operating system internals and
user application software. Mr
Guineau has received numer-
ous awards throughout his ca-
reer for software architecture
and design, including 6 recent
awards from NASMJPL. He is currently serving as architect
for JPL's SimScape terrain modeling environment. in addi-
tion to many other tasks including Mars rover simulation de-
velopment and software infrastructure for spacecraft mission
conception and design.

Dr. Abhinandan Jain is a F'rinicipal Technical
Staff engineer 'at JPL leading
the Dynamics and Real-Time
Simulation Laboratory which is
responsible for the development
of high-performance simulations
for NASA's deep space missions.
He has been a co-developer of
the Spatial Algebra mathematical
and computational framework
for multibody dynamics and was
awarded a NASA Space Act award for this research. He
authored the development of the DARTS flexible, multibody
dynamics compute engine for which he won the NASA
Software of the Year award. His research on the develop-
ment of lung time scale simulations methods for molecular
dynamics has also received a NASA Space Act award. He
was authored over 20 peer-reviewed journal papers and
several conference publications.

Christoper Lim is a Senior Software Engineer in the
Simulation and Verification Group at
the Jet Propulsion Laboratory. He has
an Engineer's Degree in Aeronautics
from Caltech and over 15 years expe-
rience in software development. He
has been serving as an architect for the
Dshell spacecraft simulation software

874

tool and its adaptation to different sim-
ulation applications.

Marc Pomerantz is a software engineer at the Jet
Propulsion Laboratory and has over 20
years of experience developing soft-
ware for JPL, Caltech and Kodak. For
the last fifteen years, Mr. Pomerantz
has participated in a variety of R&D and
flight projects and has focused on the
development of 3D and 2D visualiza-
tion systems, simulation software, dis-
tributed systems and object-oriented de-
sign and development.

161

[71

181

S. A. Ehmann, “Swift++: Speedy walking via im-
proved feature testing for non-convex objects,” 1997.
URL: http://www.cs.unc.edu/ geom/SWIFT++.

D. M. Mount and S. Arya, “Ann: Library for
approximate nearest neighbor searching.” URL
http://www.cs.umd.edu/ mount/ANN.

“Openlnventor - Object-Oriented Toolkit for 3D
Graphics.” URL http://oss.sgi.com/pmjects/inventor.

“POVRAY - Persistence of Vision Raytracer.” URL
http://www.povray.org.

[91 J. Ousterhout, “TCL - Tool Command Language.”
URL: http://www.tcl.tk.

[lo] “GTK - Gnome Toolkit.” URL http://www.gtk.org.

1111 “Gnocl - Tcl meets GTK+ and Gnome.”

Dr. Garett Sohl received his B.S.
in mechanical engineering from Rice
University in 1993. He then at- URL:
tended the University of Cal-
ifornia, Imine where he re-
ceived a masters degree (1997)
and Ph.D. (2000) in mechan-
ical and aerospace engineer-
ing. He has an extensive back-
ground in multi-body dynamic
simulation. He is currently

http://www.dr-baum.net/gnocl

“SWIG - Simplified Wrapper and Interface Generator.”
URL: http://www.swig.org.

“Doxygen - Source code documentation tool.” URL:
http://www.doxygen.org.

“Tcl Tree package.” URL: http://www.uvic.cd erem-
working as a Staff Engineer at the Jet Prouulsion Laboratory pel/tcl/tree/tree.html

L I

where he supports modeling and multi-body dynamics sim-
ulation activities for the ROAMS project. He is also serving
as Cognizant Engineer of simulation and test activities for
the Formation Algorithm and Simulation Testhed (FAST),
which is part of the Terrestial Planet Finder (TPD project.

[15] R. Gaskell, J. Collier, L. Human, and R. Chen, “Syn-
thetic Environments for Simulated Missions,” in Pro-
ceedings IEEE Aerospace Conference, (Big Sky, Mon-
tana), Mar. 2001.

References

[16] M. Lee and R. Weidner, “In-situ site knowledge
system,” in IEEE Aerospace Conference, Big Sky,
Monatana, 2001.

[17] P. Kraus, A. Fredricsson, , and V. Kumar, “Modeling
of Frictional Contacts for Dynamic Simulation,” in In-
ternational Conference on Intelligenf Robof Sysfems
(IROS’97), (Grenoble, France), Sept. 1997.

[I] A. Jain, J. Guineau, c . Lim, W. Lincoln, M. Pomer-
antz, G. Sohi. and R. Steele, “ R ~ ~ ~ ~ : planetary sur-
face rover simulation environment.” in International
Symposium on Artifcia[Intelligence. Robotics andAu-
romation in Space (I-SAIRAS 2003). (Nara, Japan),
May 2003.

[18] K. Terzaghi, Theoretical Soil Mechanics. Wiley, New
York, 1943.

[19] C. Acton, N. Bachman, L. Elson, B. Semenov,
E. Wright, B. Engelhardt, and S. Chien, “Spice: A real
example of data system re-use to reduce the costs of
ground data systems development and mission opera-

[2] J. Yen, A. Jain, and B. Balaram, “ROAMS: Rover
Analysis Modeling and Simulation Software,” in i-
SAIRAS’99, (Noordwijk, The Netherlands), June 1999.

tions,” in 5fh International symposium on Reducing the
cosr of spacecrafl ground systems and operations (RC-
SGSO), (Pasadena, CA), July 2003.

[3] J. Biesiadecki, D. Henriquez, and A. Jain, “A Reusable,
Real-Time Spacecraft Dynamics Simulator,” in 16th
Diniral Avionics Systems Conference, (Irivine, CA),
Od. 1997. [ZO] Y. Yakimovsky and R. T. Cunningham, “A system

for extracting three-dimensional measnnnents from a
stereo pair of tv cameras:’ Computer Graphics and Im-
age Processing, vol. 9, pp. 195-210, 1978.

[4] J. Balaram, R. Austin, P. Banerjee, T. Bentley,
D. Henriquez, B. Martin, E. McMahon, and G. Sohl,
“DSENDS - A High-Fidelity Dynamics and Spacecraft
Simulator for Entry, Descent and Surface Landing,” in [21] T. Litwin, “Camera model parameters.” URL
IEEE 2002 Aerospace Con$, (Big Sky, Montana), Mar. http://eis.jpl.nasa.gov/ telitwinlpublic-jpl/src/ccal/ccal-
2002. parameters.htm1.

875

http://www.cs.unc.edu
http://www.cs.umd.edu
http://oss.sgi.com/pmjects/inventor
http://www.povray.org
http://www.tcl.tk
http://www.gtk.org
http://www.dr-baum.net/gnocl
http://www.swig.org
http://www.doxygen.org
http://www.uvic.cd
http://eis.jpl.nasa.gov

[22] D. Gennery, Calibration and Orientation of Cameras
in Computer Vision. Springer Verlag, 2001.

[23] D. Gennery, “Camera calibration including lens distor-
tion,” Tech. Rep. JPL D-8580, Jet Propulsion Labora-
tory, Pasadena, CA, May 1991.

[24] Y. Xiong and L. Matthies, “Error analysis of a real-time
stereo system,” in Proc. IEEE Con$ Computer Vision
and Pattern Recognition, 1997.

[25] I. Nesnas, A. Wright, M. Bajracharya, R. Simmons,
T. Estlin, and W. S. Kim, “CLARAty: An Architecture
for Reusable Robotic Software,” in SPIE Aerosense
Conference, (Orlando, Florida), Apr. 2003.

[26] “JPL Mars Yard.” URL: http://marsyard.jpl.nasa.gov.

[27] “MDS - Mission Data System.” URL:
http://mds.jpl.nasa.gov/outreach.

[28] L. Fluckiger and N. C.. “A new simulation framework
for autonomy in robotic missions,’’ in International
Conference on Intelligent Robot Systems (IROS), (Lau-
sanne, Switzerland), Oct. 2002.

876

http://marsyard.jpl.nasa.gov
http://mds.jpl.nasa.gov/outreach

