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Abstract ponents of the robotic vchicle mechanical subsystem, sen- 
son, on-board control software, as well as the environment 

This paper describes recent developments in the ROAMS and terraidvehicle interactions. ROAMS provides interfaces 
physics-based simulator for planetary surface exploration to close many different rover control loops ranging from 
rover vehicles. ROAMS includes models for various subsys- IOW level motor control, locomotion estimation and control, 
tems and components of the vehicle including its mechani- to navigation and .,ision control loops shown in Figure 1. 
cal subsystem, sensors. on-board resources, on-board control The ROAMS 'simulator is being used for stand-alone sim- 
software, the terrain environment and terraidvehicle inter- 
actions. The ROAMS simulator can be used in stand-alone 
mode, for closed-loop simulation with on-board software or 
for operator-in-the-loop simulations. 

1 Introduction 

There has been significant growth in the number of space 
exploration missions devoted to planetary surface operation 
using mobile rover vehicles, The Mars Exploration Rover 
(MER) mission launched in 2003 and scheduled to land in 
2004 is a prime example of such a current mission, with the 
Mars Science Laboratory (MSL) representing the next gen- 
eration of such surface exploration missions. Highlights of dation, closed-loop simulations with onboard software and 
the MSL mission include significantly extended mission life for operator-in-the-loop simulations. ROAMS is also being 
(over 18 months) and rover traverse distances for Mars sur- used to support the development, testing and maturation of 
face exploration. new rover technologies for eventual infusion into missions 

such as MSL and beyond. 
The development and testing of onboard software for plane- 
tary rovers has traditionally been done using rover hardware References [1,2] earlier reported on the key architectunl el- 
platforms and testbeds. These hardware resources are ex- ements of ROAMS and provided a snapshot description of 
pensive and typically over-subscribed. To alleviate this situ- its tionality. In this paper, we describe the further ca- 
ation, validated modeling and simulation capabilities for sur- p s that have been developed in ROAMS as well as 
face rovers are being developed in Rover Analysis, Model- preliminary validation results. 
ing and Simulation (ROAMS) [l, 21 to support the mission 
in canying out surface system trade studies, development of 
new rover technologies, closed-loop development and test of 
onboard flight software, and for use during mission opera- 
tions. 

Figure C1oSed-hJ interfaces to the 

2 ROAMS Design Goals 

ROAMS includes models for various subsystems and com- 
We describe first some of the key design goals that are driv- 
ing the ROAMS development. 0-7803-8155-6/04/$17.00 @ZW4 IEEE 
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2.1 Validated Physics Bused Models 

A primary requirement on ROAMS is that it serve as a high- 
fidelity surrogate rover to support closed-loop testing beyond 
what is possible with just hardware rover testbeds. These 
high fidelity needs require ROAMS to implement (a) de- 
tailed physics based models of the rover mechanical plat- 
form including its kinematics and dynamics, (b) its suite of 
actuators and sensors such as wheel & steering motors and 
encoders, inertial measurement units OMUS), sun sensors, 
cameras, and (c) models of the environment and the rover’s 
interactions with the environment. Hand in hand with the 
model development process is an ongoing ROAMS simula- 
tor validation effort consisting of a series of experiments in- 
volving deterministic as well as statistical comparisons with 
physical rover data. 

2.2 Model Configurabilitj 

Development of the rover flight system typically involves 
test platforms ranging from experimental technology devel- 
opment rovers all the way to flight breadboards and spares. 
The configuration of these platforms typically evolves over 
time with updates to the sensor/actuator suite, avionics and 
other hardware components. ROAMS is expected to provide 
models that shadow these multiple rover platform confignra- 
tions at any given time and track their evolution over time. 
This requires that ROAMS avoid monolithic, rover platform 
specific simulation implementations. Instead a conscious de- 
sign strategy has been to allow users to configure ROAMS 
for different rover models easily at run-time via model data 
files. While allowing usen to easily tailor simulations to 
the specific platforms, this configurability has been useful 
during the simulation validation effort to match ROAMS to 
rover model configurations used in the experiments. 

2.3 Closed-Loop Simulations 

As a test platform, ROAMS is meant to be used in closed- 
loop with the onboard rover software and hardware. This re- 
quires ROAMS to be embeddable within closed-loop testbed 
environments containing a mix of onhoard software, real 
hardware and simulated hardware. ROAMS provides hard- 
ware like command and sensing interfaces similar to actual 
hardware to allow such loop closure. Particular attention has 
been paid to simulation algorithm performance in order to 
meet the closed-loop timing requirements. Also, ROAMS 
is portable across Unix and real-time VxWorks platforms. 
The Dmex tool [l] provides auto-generated interfaces for 
embedding ROAMS within a Matlab/Simulink environment 
for control algorithm development and testing. 

2.4 Layered Toolkir Approach 

While simulations are expected to to the “right” thing, i.e. 
provide good fidelity, they also need to provide a significant 

level of instrumentation and other features for them to be 
usable. Since the inclusion of these features adds to code 
size and the number of external dependencies, ROAMS bas 
adopted a layered design, where many of the features are im- 
plemented as optional plug-in extensions so they can be in- 
cluded as needed at run-time. This approach has also helped 
increase the amount of reusable modules within ROAMS. 

2.5 Spacecruji Simulation Framework 

To accelerate the development of ROAMS, ROAMS is built 
upon the existing DARTS & Dshell simulation framework 
[3] developed for spacecraft simulations. This strategy has 
allowed the ROAMS development effort to focus on the 
extensions needed for the surface rover domain. Likewise 
this has had the effect of making available these extensions 
to other simulators sharing the same simulation infrastruc- 
ture. A case in point here is the DSENDS entry, descent 
and landing simulation tool [4] which uses the same DARTS 
& Dshell simulation framework and shares several modules 
with ROAMS including those for dynamics simulation and 
terrain environment modeling. 

Figure 2: Common Dshell simulation infrastructure 
for ROAMS and DSENDS 

2.6 Open source tools 

Complementing our goal of using established spacecraft 
simulation capabilities, we have placed emphasis on us- 
ing and adapting open source software wherever possible. 
This has led to the use of computational libraries such as 
SWIFT++ [5]and ANN 161, visualization layers such as 
Openhventor [7], POVRAY [8], ‘graphical user interface 
tools such as Tk [9], Tix, Gtk [IO], Gnocl [ I l l ,  TCL [91 & 
SWIG [121 scripting interfaces, and documentation genera- 
tion tools such as Doxygen [13] within ROAMS. 
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2.7 Usable 

With the increase in detail and functionality of ROAMS, we 
recognize the need to provide user interfaces to facilitate the 
use of ROAMS and reduce the learning curve. While the 
ROAMS core is implemented in C/C++, It includes a TCL 
[91 scripting interface (auto-generated by the SWIG [I21 
wrapper generation tool) to the core C/C++ classes to facil- 
itate simulation configuration and regression testing. This 
scripting capability is also used to develop graphical user 
interfaces for users to change simulation modes, set rover 
goals, change simulation speed. take time steps, exercise 
rover degrees of freedom, select terrain models etc. The 
Dspace 3D visualization toal [I] provides run-time visual- 
ization of the rover simulation state. 

3 ROAMS Models 

In order to provide a high-fidelity virtual rover, ROAMS’ 
vehicle models include kinematics and dynamics algorithms 
as well as models of its hardware components, models of 
the rover environment including the terrain and the sun, and 
interactions between the rover and its environment. To fa- 
cilitate testing of the simulated rover, ROAMS also includes 
representative models for software components such as nav- 
igation, locomotion and motor control algorithms. 

The sections below describe in more detail some of the re- 
cent ROAMS model developments in the areas of camera im- 
age synthesis, terrain models, wheel-soil interaction, plane- 
tary ephemerides and sun camera models. Reference [l] de- 
scribes previously developed ROAMS’ models of the rover 
kinematics and dynamics as well of its hardware devices 
such as inertial measurement units (MU), motors etc. 

In addition to vehicle modeling, ROAMS must also model 
the rover environment. As a surface vehicle, the rover in- 
teracts with the environment primarily through the terrain. 
Accurately modeling of this terrain and the contact forces 
between it and the rover are the primary focus of environ- 
mental modeling in ROAMS. In addition to physical char- 
acteristics, ROAMS also provides an accurate graphical rep- 
resentation of the ternin for presentation to onboard can- 
era models. The relative position of the sun can he used to 
generate realistic shadows and is computed using planetary 
ephemeris information. 

3. I Rover Model Definition 

An important provision within ROAMS is a flexible model- 
ing infrastructure that can handle multiple vehicle types and 
configurations. ROAMS employs modular, hierarchical pa- 
rameter templates to provide the flexibility needed to manage 
rover simulations involving hundreds of parameters. These 
template trees are constructed using the Tree TCL package 
[141. Branches of the parameter tree are based on physical 

rover sub-systems (i.e. arms, wheels, mast) and environment 
(i.e. location, soil type, time of day). These parameters are 
used to instantiate the run-time rover model. 

At start-up, ROAMS constructs a parameter tree containing 
default values along with text descriptions of each parameter. 
When a pasicular rover type is loaded into ROAMS at run- 
time, it inherits these defaults. However, the model can also 
overload or modify any of the existing parameters. This is 
required in order to specialize parameters such as kinemat- 
ics, mass and inertia properties for a particular rover. This 
ability to inherit and overload parameters has been useful 
in allowing new parameters to be added to the ROAMS pa- 
rameter tree without any changes to the vehicle models (un- 
less the default value needs to be modified). It also allows 
ROAMS to instance multiple rovers of the same or different 
types with ease as well as to easily vary the rover parameters 
for Monte Carlo simulations. 

3.2 Terrain Modeling 

An important consideration in rover simulation is modeling 
the terrain upon which the vehicle moves. Being a surface 
vehicle, the mver has intimate interaction with the terrain. 
ROAMS provides a common interface for using digital ele- 
vation map (DEM) terrain models created from a variety of 
sources. These sources which can be generally categorized 
as empirical, analytical or synthetic. 

Empirical terrain models are representations of natural land- 
scapes encountered in field tests during rover traverses. 
These terrain models are useful for comparing physical and 
simulated rover data for simulation validation as well as for 
predictive purposes. The mechanism by which empirical ter- 
rain data is collected ranges from manual measurement and 
optical surveying to high-precision radar and laser scanning 
techniques. In all cases, the data are collected from the actual 
landscape under consideration and are later reconstructed to 
generate a topography of the landscape. 

Analytical terrain models are useful when specific surface to- 
pography (eg. constant slope) is desired for simulating con- 
trolled rover scenarios. Such terrain models can be generated 
algorithmically using parameterized mathematical functions. 
Using this analytical method, surfaces such as a precisely 
controlled slope or a specific type of obstacle such as a bump 
or a pothole may easily be generated with precise character- 
istics. 

Synthetic terrain models are useful in simulation scenarios 
where statistically realistic planetary landscapes, eg. Mar- 
tian landing sites, are required for the simulations. Synthetic 
terrain generation algorithms [15,161 allow the user to spec- 
ify general characteristics such as the range of rock sizes 
and distribution densities, along with other features such as 
craters. The terrains can be synthesized from scratch or can 
be enhancements of lower resolution base terrains. These in- 
put parameters for these terrain synthesis algorithms can be 
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varied to generate a range of terrain models for use in statis- 
tical rover simulation studies. 

for simulating antenna pointing and telecommunication up- 
IinWdownlink link scenarios. In addition to planetary bodies, 
SPICE can import spacecraft ephemeris in order to compute 
the position of orbiting spacecraft relative to the rover. 

3.3 Soil confacf modeling 

The primary goal of the terrain interaction modeling in 
ROAMS is to compute the forces and moments exerted by 
the terrain on the vehicle. Given these forces, the resulting 
motion of the rover is a well understood rigid multi-body 
dynamics problem. ROAMS makes the simplifying assump- 
tion that contact forces are applied at a single point for each 
wheel and hence the applied moments from contact can be 
regarded zero. The force at the contact point for each wheel 
is decomposed into normal and tangent components. The 
normal direction is defined as perpendicular to the terrain 
at the contact point. ROAMS uses a non-linear compliance 
system to compute the force in the normal direction. As 
the rover sinks into the terrain, the compliance system in- 
creases the normal force until equililirium is reached. This 
allows ROAMS to solve for the statically indeterminate nor- 
mal forces. The magnitude of the normal force serves as the 
foundation for almost every contact model. 

Once the normal force has been computed, the forces in 
the tangent plane can be computed. ROAMS employs a 
two-dimensional compliance system described in [17]. Pre- 
viously, ROAMS used a simple Coulomb friction law to 
compute the maximum allowable tangent force (IlF~ll  5 
p l [ F ~ l [ ) .  This has been updated to limit tangent force based 
on the soil mechanics parameters of internal friction angle 
(4) and soil cohesion (e) .  These parameters provide a more 
accurate representation of the transition between rolling and 
sliding behavior in soil. Maximum tangent forces are now 
given as: 

IlF~ll I CA, + IIFNIltan4 

where A, is the area of the wheellsoil contact patch. 
ROAMS currently uses heuristic techniques for computing 
the area of the contact patch. These heuristics will be re- 
placed by more accurate modeling based on terra-mechanics 
equations [is]. 

3.4 Ephemeris Interface 

Another new feature of ROAMS is an interface to the SPICE 
software package [ 191. The SPICE package provides a pow- 
erful, extensible database of ephemeris information for all 
major bodies in the solar system. Sun position relative to the 
rover can he computed at any time and for any location on 
the surface of Earth or Mars. The sun position in the sky 
is used by several models including the sun-sensor and sun 
camera models, the solar panel model, and in the future will 
he used for the accurate generation of shadows for camera 
image synthesis. ROAMS provides the sun position infor- 
mation to Dspace to generate a graphical image of the sun 
for simulating a sun camera image. The SPICE interface 
also allows the computation of relative planetay positions 

3.5 Camera Image Synthesis 

Camera image synthesis is an important new capability cur- 
rently under development within ROAMS. Simulation of 
stereo camera images allows ROAMS to close the loop with 
the stereo pipeline in the onboard software. The stereo 
pipeline is used for generating range maps for the onboard 
hazard detection and rover navigation algorithms. These im- 
ages can also be used for visual odomehy and visual tracking 
applications. We describe here the current status of our cam- 
era image synthesis work while it remains an active area for 
both development and validation. 

CAHVORE Camera Models - The basic camera model in 
use for robotic vehicles used in Mars planetary exploration 
was originally developed by Yakimovskly and Cunningham 
[20,21]. This model included a central perspective pro- 
jection and an arbitrary affine transformation in the image 
plane. Since then this model has been extended to include ra- 
dial lens distortion [22] and representation of entrance pupils 
suitable for use with fish-eye type lenses [23]. The basic 
camera parameter in these models consist of C - the Center 
Vector of the entrance pupil, A - the Axis Vector normal to 
the image plane, H -the Horizontal Vector for the image, V - 
the Vertical Vector for the image, 0 - the Optical Vector that 
is the symmetry axis for radial distortion, R - Radial Distor- 
tion polynomial coefficients, and E - Entrance Pupil polyno- 
mial coefficient terms. Together these CAHVORE parame- 
ters (1 8 for the CAHVOR portion) allow modeling of a wide 
variety of optical system including lenses with wide field-of- 
views and fish-eye distortions. Rigorous least square proce- 
dures exist for estimating the values of all of the CAHVORE 
parameters. 

Image Synfhesis using Dspace - Currently the ROAMS simu- 
lated camera models take into account only the CAHV cam- 
era parameters while the simulation of the radial and fish-eye 
distortion effects is planned for the near fumre. ROAMS uti- 
lizes the Dspace 3D visualization tool to synthesize stereo 
image pairs for the various hazard cameras (hazcams) and 
panaromic cameras (pancams) on the rover. To perform im- 
age synthesis, Dspace uses its list of 3D visualization graph- 
ical objects such as DEM based terrains, associated textures, 
CAD file representations for all rovers in the simulation, the 
position of the Sun and other light sources, in combination 
with camera parameters derived from the CAHV parameters 
for each of the left and right stereo cameras, to render images 
for processing by stereo correlation code. 

For each simulated camera, position and attitude information 
for the camera is passed to Dspace by ROAMS, along with 
the field of view and resolution (in pixels) for the camera. 
Since the camera’s optical axis may not be perfectly centered 
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in the image plane, Dspace renders an image larger than the 
resolution of the camera and then extracts the camera image 
region from about the optical center to produce the final ren- 
dered image. This over-rendering is required because Open- 
InventodOpenGL cameras do not support off-center bore- 
site rendering. Currently, depth-of-field calculations are not 
supported. When camera image rendering is complete, that 
image is converted to a 8 bit greyscale image for further pro- 
cessing. Dspace performs the camera rendering in an “off- 
screen” mode. Figure 3 shows an example synthetic stereo 
image pair generated by ROAMS. 

Figure 3: Synthetic stereo camera image pair 

We have used a C++ Stereo Vision libraq [24] developed 
at JPL to verify that range map information can be success- 
fully extracted from the synthetic images. Figure 4 shows 
the resulting range map generated for the stereo image pair 
in Figure 3. The upper left and right images are color coded 

Figure 4: Range map from the synthetic stereo camera 
image pair 

representations bf the the distance and height for each point 
in the range map. The bottom image shows a top down view 
of the range map where the dark areas in the middle are the 
“holes” in the range map due to occlusion of the area by the 
rocks. The Stereo Vision library is flexible in the image input 
format and can process 8 bit grey-scale and color pixels (up 
to 96-bits of precision) if greater accuracy is desired. Using 
a CAHVOR camera model as input, the Stereo Vision code 

compares the camera images to produce a single “disparity” 
image from which a range map (three-dimensional distance 
of each pixel from the camera) is computed. We have been 
using this stereo code to test and validate the synthetic cam- 
era images being generated by ROAMS. 

4 ROAMS Validation 

In order for a rover simulation to be useful in developing 
rover navigation and control software, its behavior must cor- 
respond well with the operation of a real physical rover 
in a real environment. Hence, in parallel with the ongo- 
ing development of ROAMS, we have been undertaking a 
validation effort for ROAMS using experimental data from 
rover mobility tuns. Our validation strategy has two tracks. 
One track is pursuing deterministic validation for parts of 
the system that are deterministic (eg. the rover hardware 
model). Another track is using statistical matching for the 
non-deterministic or difficult to characterize pans of the sys- 
tem (eg. wheel slippage). Deterministic comparisons he- 
tween simulated and experimental data is difficult due to the 
uncertainty in environment models and the inherent com- 
plexity in creating them. 

The motion of a rover over a planetary terrain is a product 
of many different components and levels of the system. At 
the lowest level. there are rover rockers and bogeys (suspen- 
sion components), wheels, actuators (motors), and sensors. 
External influences, such as the temain shape and properties, 
are also a critical factor in the rover motion. A key goal of 
our ROAMS validation effort is to validate the rover motion 
at various levels of operation. We are validating the opera- 
tion of actuator and other individual component models. It 
is important to establish good correspondence for the lower 
loops in the system between the simulation and physical ex- 
periments, since they serve as the foundation for the system 
level behavior of the system. We also examine the overall 
motion of the simulated rover to validate the higher level 
navigation loops in the system. 

The level of detail needed in the individual component mod- 
els for adequate simulation fidelity is intimately driven by the 
rover’s operational parameters, i.e. rover speed, terrain slope 
and roughness, onboard sensors etc. One of our goals in 
the validation activity is to develop benchmarks and guide- 
lines in this area. To this end, we are carrying out a series 
of validation experiments which analyze the performance of 
individual components as well as the overall system while 
traversing controlled, easily modeled surfaces. The follow- 
ing section describes the results from these experiments. Our 
eventual goal is to validate simulated traverses over natural 
terrains. However, such validation requires accurate models 
of the terrain, and Section 4.2 describes our current work on 
terrain model reconstruction. 
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4.1 Vehicle model validation on controlled surfaces 

Our first rover model validation experiments included driv- 
ing a rover straight on a Hat surface. We used these early 
experiments to check out the wheel radius parameters and 
improve our motor and gear train models for the wheels and 
steering motors. 

Rockys ruver driving in a 0.5 meter circular arc - We per- 
formed an experiment of driving the Rocky8 [25] rover in 
a 45 degree circular arc of 0.5 meters radius on a Hat sur- 
face in the JPL Mars Yard [26]. The Mars Yard is an area 
with rocks and surface materials that are representative of 
Martian surfaces. The purpose of the experiment was to val- 
idate the wheel and steering motor control models associated 
with making a turn and the IMU model. During the turn, the 
average wheel angle deviations at the end of the turn was ap- 
proximately 2.1% as shown in Figure 5. Figure 6 shows the 
steering angle profile whose the average deviation was 0.9%. 
During the time the rover chassis was rotating, the M U  rate 
deviation between the experimental and simulation data was 
about 4% as shown in Figure 7. 

Figure 5: Front wheel angles during Rocky8 circular arc 

In summary, this experiment showed excellent agreement 
on Rocky8 steering kinematics, wheellsteering motions, and 
gyro response. We were unable to compare actual vehicle 
motion because the physical positions were not measured 
during the experiments. 

Fido mver driving up a ramp - We subsequently performed 
an experiment driving the Fido rover [25] from a Hat sur- 
face up a 13.4 degree slope. The rover went a total of 230 
cm, including about 65cm on the flat surface before the front 
wheels touched the ramp. In this experiment we were able to 
accurately measure the position of the rover at the beginning 
and ends of the motion using a TotalStation. The purpose of 
this experiment was to validate rover kinematics, dynamics, 
and wheel slippage models over a non-flat terrain. In this ex- 
periment, the wheel angle deviation at the end of the run was 

m w  

Figure 7: IMU Z rotation during Rocky8 circular arc 

5% or less. The deviation in the total distance moved was 
1.6% based on the TotalStation measurements. 

This was the first experiment that included significant 
rockerbogey motions. Since the rover contacted the ramp 
straight on, the rocker angles should he small since they mea- 
sure the relative rotation between the rockers on the two sides 
The deviation of the bogey angles was about 27.1% and the 
left bogey and 30.4% for the right bogey and is shown in 
Figure 8. 

Various data-collection and calibration problems prevented 
us from analyzing IMU operation during the experiment. 

This experiment also allowed us to do some rough analysis 
of the traction of the wheels on the ramp surface (which was 
covered with a plywood board). We did a series of simula- 
tions that varied the coefficient of friction between the wheel 
and the tamp surface. We obtained a good match the actual 
motion with a coefficient of friction of 0.6 as seen in Figure 
9. 
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Figure 8: Rocker and bogey angles for Fido rover driv- 
ing up a ramp 
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Figure 9 Forward motion for various wheel-surface 
coefficients of friction 

In summary, this experiment shows good agreement on 
wheel angles and actual overall rover motion. It allowed us 
to estimate the coefficient of friction between the wheels and 
the ramp. There was moderately good agreement between 
real and simulated bogey angles. Some of the discrepancy 
between real and simulated bogey angles may be due to cal- 
ibration problems on the Fido rover and needs further inves- 
tigation. 

4.2 Empirical Terrain Reconstruction 

In more interesting scenarios, the rover will drive over natu- 
ral terrains which are not geometrically simple surfaces. Dif- 
ferent wheels can encounter different rocks at different times 
and produce complex motions. In order to validate rover 
simulations in realistic situations, it is clear that an accurate 
representation of the terrain surface and traction properties 
is essential. This section provides an overview of an empir- 

ical terrain topography reconstruction process we have been 
developing at JPL's Mars Yard. 

The Laser Scanner - The scan of the Mars Yard was done us- 
ing a high-end laser scanning device, the LMS-2360, man- 
ufactured by Riegl Laser Measurement Systems. The LMS- 
2360 is a laserlmirror scanning device that utilizes a fixed 
laser beam and a rotating deflection mirror, mounted within 
a rotating pedestal. This configuration allows the user to ob- 
tain a panoramic range map of the environment surround- 
ing the scanner. The device uses the time of flight (TOO of 
a pulsed laser beam to determine range information, while 
precisely controlling the rotation angle of the mirror to ef- 
fect a vertical scan range of approximately +I- 45 degrees 
from horizontal. This provides a precisely controlled verti- 
cal sweep of range measurement locations. 

. . . . . . . .  . . . . . . . . . . . . . . . . . . . . . .  
Rotnting mirror . .  

Objed (eg. d) L a w  pllse & 
detector 

i . .  , ,  . . ,  . . .  ........ - .................. >- - ... 

Figure 10: Laser Mechanism 

Figure 10 shows a simple schematic diagram of this mech- 
anism. The entire laserlmirror unit is then rotated about it's 
vertical axis to provide the horizontal sweep, generating a 
panoramic set of vertical scans centered about the scanner's 
position. The scanner unit itself is mounted on a tripod to 
provide portability. This also gives it a vertical elevation cen- 
terline from the ground on the order of about 1-1.5 meters. 

The manufacturer claims the best-case resolution of the 
range data to be 5mm, with a 1 sigma std dev accuracy of 
+/-12mm. Angular resolution for both the vertical and hori- 
zontal sweeps is specified at a minimum of 0.01 degrees. The 
software allows selection of various modes of operation, an- 
gular scan limits and resolution as well as selecting the focal 
point of the laser beam. The various quality settings have a 
large impact on the time it takes to scan an area as well as 
the volume of data collected. 

Scanner Output - The output produced from the LMS-2360 
software consists of an ASCII file containing data for each 
individual laser range measurement and a set of three bitmap 
images: a range image, an intensity image and a true-color 
image. Each pixel in the image corresponds to an individual 
laser measurement point, which in turn corresponds to an en- 
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try in the ASCII data file. The ASCII data file consists of one 
line for each point containing a user-selectable set of data for 
that point. In this experiment the software was configured to 
output the (X, Y, Z) coordinate of each sample along with a 
laser reflection intensity value. The coordinate of each point 
is in a scanner-relative frame of reference where the scanner 
is at the origin. This X, Y, Z representation of the scanner 
data is a point cloud of individual points in 3D space but con- 
tains no explicit surface information (i.e. no correlation as to 
which points are part of the same objects surface.) When 
plotted on a computer with a 3D viewer (for example as a 
VRML file), the human eye can easily distinguish the orig- 
inal scene as long as sufficiently high resolution was used 
when collecting the data as shown in Figure 11. 

Figure 11: Sample point cloud generated by the scanner 

4.3 Scan procedure 

By nature, laser is a line-of-sight mechanism and can there- 
fore only produce range data (i.e. reflections) from surfaces 
that are reasonably normal to, and lie along, the path of 
the laser beam. However just as when shining a flashlight 
against a tree or a rock, a shadow is cast behind the object. 
In the case of a laser scan, there will be no range information 
obtained in these shadow areas. This effect can be seen in 
Figure 12 where the laser scan is coming from the left side 
of the image. As a result, the scanner data collection must be 
done from several strategic vantage points for full coverage 
of the terrain, and each scanner position must then be merged 
into a single dataset. For example, 4 separate scans, one from 
each of the front, back, left and right “sides” of the area un- 
der consideration may be needed. This will insure coverage 
of all sides of objects such as rocks, terrain undulations and 
other markers. When the multiple scans are later merged, 
the resulting 3D topology may be viewed from virmally any 

Figure 12: Laser shadows behind rocks 

angle covered by the collective scanner perspectives 

In order to register and correctly merge the multiple scan 
data sets, a number of fiducials - or fixed-place markers - 
visible to the I se r  from each of the scanner orientations are 
used. The fiducials are generally small, highly reflective tar- 
gets placed at precisely known locations. In Figure 13, a 

. . . . .  

Figure 13: Mars Yard scan setup 

fiducial is placed at each comer of the Mars Yard and has 
been precisely surveyed using a Totalstation. The reflec- 
tive targets produce bright, well-defined reflections (spikes) 
in the laser intensity data. We created utilities to post-process 
the intensity image data and automatically locate the posi- 
tions of the reflectors relative to the scanner location. 

In this experiment, we also placed several standard patio 
bricks at various points in the terrain and measured their 
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precise locations. These “markers” were used later to mea- 
sure the accuracy of the reconstructed terrain. The layoul 
of the scanner positions and bricks is shown in Figure 13. 
The green squares are bricks and the blue circles are scan 
positions. The laser target detection software annotates the 
intensity image as shown in Figure 14, and outputs an ASCII 

Figure 14: Annotated laser scanner image 

table of coordinates for the location and dimensions of each 
reflector as well as a 3D laser intensity surface plot, which 
is useful for visualizing the quality of the scan data of each 
reflector as show in Figure 15. 

4.4 Registering and Merging the Scan Data Sets 

Using the known absolute locations of the reflector fidu- 
cials in together with their scanner-relative locations in the 
scanned data, one can construct a transformation matrix for 
each scanner position. Using this transformation matrix, the 
point clouds for each scanner position can then be translated 
and rotated so as to register each individual scanner-centric 
coordinate frame into a common reference frame (which is 
typically the frame of the fixed fiducials.) Again, we created 

.. *., ... - 

Figure 15: Reconstructed surface of a reflector 

ner positions into a single dataset. This software can provide 
false coloring of the point clouds from each scan position. 
The idea being that the merged scans from multiple strategic 
vantage points will fill-in the distant low-density areas from 
scans taken further away. We can see from the merged, color 
coded point cloud in Figure 16 color-coded scans where each 

Figure 16: Merged, color-coded scans 

utilities to automate this process and produce a set of ASCII 
point cloud files in one (Mars Yard) frame of reference. The 
accuracy with which the location of the fiducials are known scan Position Was taken from (e.g. grm=left, red=top etc.), 
along with the accuracy and resolution of the scanned data and how each local scan filled in missing data from the dis- 
determine to a large extent the accuracy of the registration tant Scans across the Mars Yard. When plotted in a 3D 
of the point clouds, and therefore the fidelity of the recon- viewer, the colorized point clouds reveal a great deal of in- 
structed terrain. formation as to the contribution of each scan position to the 

overall dataset. Figure 17’s shows a close up view of the 
Another utility then merges the multiple co-registered scan- false coloring of the merged data. 
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Figure 17: Close-up view of the color-coded merged 
scans 

4.5 Su~ace  Reconstruction 

There are many factors that contribute to the actual resolu- 
tion and accuracy of the data obtained from a laser scanner. 
In the LMS-Z360 the laser beam emanates from a fixed point 
in space and is then deflected, by mirror angle and device ro- 
tation angle, to a target sample vector. This geometry results 
in an angular separation of adjacent scanned points that in- 
creases with the distance from the scanner: the further away 
from the scanner a surface is, the lower the effective reso- 
lution of the scanned image at that surface. In other words, 
scanner resolution decreases as distance from the scanner in- 
creases, resulting in a variable resolution of scanned data. It 
is therefore important to consider the number and position of 
each scanner location such that distant objects receive ade- 
quate coverage to faithfully represent the surface. For exam- 
ple, with the scanner set to a vertical and horizontal angular 
rotation step of 0.05 degrees (a medium-high resolution set- 
ting for the 2360). a vertical surface 2 meters away will see 
an effective coverage of about 1 . 7 d p o i n t  whereas a ver- 
tical surface 20 meters away will see an effective resolution 
of about 17.5mdpoint - 1/10 the coverage! This effect is 
illustrated in Figure 18. 

Applying the same reasoning to a horizontal surface (e.g. the 
ground) with the scanner mounted 1 meter off the ground, 
the difference in resolution goes from a about 3mdpoint at 
2 meters away to over 30mdpoint at 20 meters from the 
scanner! When scanning large areas such as the JF’L Mars 
Yard (which is approximately 20x20 meters in size), this ef- 
fect must be taken account and additional scanner positions 
must be considered to maintain a minimum level of scanner 
coverage. When looking at the point cloud of a single scan- 
ner position, this effect is very pronounced as can be seen 
in Figure 19. In this top view illustration, the scanner is in 

. . . . . . . . . . . . . . . . . . . . . . . . .  

i d=Dtan(theta) 

. . .  . . . . . . . . . . . . . . .  . . . . . . . .  

Figure 18: Angular separation effect on resolution 

the upper-left comer, where one can see a very dense point 
distribution, but by the time you get to the lower-right cor- 
ner, only 4 or 5 meters away, the degradation in resolution 
coverage along the ground is already quite apparent. 

A second significant factor to consider when using a laser 
scanner instrument such as the LMS-Z360 is the actual di- 
ameter of the laser beam itself, and the response timing ca- 
pabilities of the receiving electronics. For the LMS-Z360, 
the laser beam is under software focus control, and can be 
focused from 2 meters to infinity. According to the man- 
ufacturers specifications, at 2m focus the beam diameter is 
approximately 5mm. while at 10m focus, the beam diameter 
is approximately 22mm. Given the above described impli- 
cations of angular separation effects on resolution, consider 
that at IO meters there is an effective resolution of about 
9mdpoint and a beam diameter of 22mm. This means that 
the laser beam will overlap each adjacent scan point, provid- 
ing a level of uncertainty in the exact location of the detected 
reflection. 

In addition, when the beam hits the edge of an object (for 
example a flat-edged rock or a brick “marker”), the beam 
will be “split.” Part of the beam will reflect from the brick’s 
surface, the other part of the beam will continue on past the 
brick and reHect from whatever it happens to hit along it’s 
path beyond the brick. The effect is that the scanner will 
see multiple reflections from a single laser pulse. If those 
reflections fall within the pulse timing detection window of 
the receiver, the scanner will not be able to resolve the dif- 
ference. The LMZ-Z360 allows the user to select either the 
‘‘first return” or the “last return” to resolve this ambiguity in 
choosing the range value from the multiple reflections. This 
beam splitting effect is very pronounced in terrains with ob- 
jects having sharp edges (such as the bricks used for val- 
idation of the scan registration) and in fact is a source of 
great distortion in the reconstructed terrain that must be til- 
tered out to retain the fidelity of the original landscape. This 
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Figure 19: Decrease in scan point density with distance 

beam-splitting effect can he seen in Figure 20. Here is a side 

Figure 20: Shroud effect from brick beam splitting 

view of a brick, scanned from several meters away with the 
beam focus set to infinity. You can actually trace the angle of 
the “shroud” of sample over-spray back to the original scan- 
ner location. Given the beam diameter overlap with apparent 
resolution coverage that varies with distance, the best choice 
between first or last response is not always clear. In addition, 
the reflective qualities of the actual material being scanned 
will affect the intensity of the reflections (and components 
of split reflections) so as to potentially trick the thresholding 
of the laser response detection sensor circuitty, adding fur- 
ther “noise” to the measurements. By controlling the beam 
focus and taking banded, limited-range scans (by limiting 

the vertical sweep angles to cover a small concentric radius 
about the scanner’s position) you can achieve significantly 
better results as shown in Figure 21. Of course, this requires 

Figure 21: Reduction in shroud effect with improved 
beam focus 

a many more extensive scans, with a significant increase in 
the amount of post-processing of the data. 

Again we wrote utilities to perform further filtering of the 
point clouds, which removed most of the beam splitting ar- 
tifacts, but at the cost of some lost information. The filter- 
ing algorithm passes a cube of configurable size (e.g. lcm) 
throughout the entire 3 0  temain dataset and simply deletes 
all points within the cube if the density of points is helow 
some specified threshold. This type of filtering must be per- 
formed on the final, merged datasets to prevent it from delet- 
ing entire valid, low-density regions of a single scan position 
that are far from the scanner location (i.e. due to the resolu- 
tion degradation effects described previously.) 

More work is needed in separating out the features (rocks, 
bricks etc) from the base terrain to retain detail in the ren- 
dered image. An example of a 12m x 14m patch of Mars 
Yard, as a 3D mesh an he seen in Figure 22 as a VRML 
mesh. 

Surface Texture - Another step in the reconstruction process 
makes use of the true-color image generated by the LMS- 
2360 software. Using the same transformations of each scan 
position, and a simple 3D to 2D projection algorithm, the 
true-color panorama images can be merged and converted 
into a texture overlay for the terrain data. Some image pro- 
cessing to adjust gamma, brightness and contrast provides a 
realistic looking terrain for rover simulation - Figure 23. In 
this view, it is possible to see the effects of each scan po- 
sition as the subtle radial shadows emanating from each of 
the 4 scanner positions. Some image processing was done 
to compensate for this, but the effects could not be elimi- 
nated completely. Additional, more closely spaced scanner 
positions will likely make a significant improvements here. 
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Figure 22: Reconstructed Mars Yard terrain mesh 

In the final analysis, our validation analysis showed the re- 
constructed terrain to be mostly within 1 cm accuracy, with a 
worst-case of less than 2cm error. This is well within the ex- 
pected limitations of the scanner for the scanner modes used 
for the data collection. Future terrain reconstruction experi- 
ments will make use of the lessons learned here to improve 
the quality and accuracy of the reconstructed terrain. 

5 Closed-Loop Simulations 

In stand-alone simulation mode, a user normally interacts 
with ROAMS through a comprehensive G U S  (shown in Fig- 
ure 24), for simulation configuration, control and visualiza- 
tion. The majority of the simulator is written in C++, with 
scripting interfaces (e.g. TCL) exposed at key points in the 
architecture. In order for an external application to close 
the loop with ROAMS, a light-weight set of C++ interface 
classes, denoted RoamsIF, has been developed to provide 
programmatic access to initialize, configure and interact with 
the simulator. 

5. I Overview of Roamslf 

Using RoamsIF, an application can gain complete control of 
the ROAMS simulator at all levels. RoamsIF provides two 
C++ classes with which a users application program can in- 
teract with ROAMS. 

The primary class, RoamsIF, provides methods for simula- 
tion configuration and control as well as various utility meth- 

Figure 23: Texture image for the Mars Yard terrain 

ods for timer callbacks and terrain selection. For example, 
RoamsIF exposes methods for selecting the state propaga- 
tion mode (e.g. kinematics or dynamics), methods for adding 
new rover vehicles to the simulation and methods for con- 
trolling the simulation clock and advancement of time. The 
application program can then step the simulation one step at 
a time, or it can advance the simulation to some point into 
the future. 

The second class is the RoverIF class. For each new rover 
that is added to the simulation, a RoverIF object is created 
for the rover. The RoverIF class provides methods for ac- 
cessing rover-specific information and settings. RoverIF has 
methods for selecting high-level configurations such as the 
navigation algorithm to use (or no navigation at all), and 
for specifying the rover’s position and navigation goal loca- 
tion. RoverIF also provides low-level command access to the 
rover’s underlying subsystems, such as it’s wheel and steer- 
ing motors. Using these methods, the application software 
can control the rover’s movement at the individual wheel 
motor level by commanding motion profiles (e.g. maximum 
acceleration, coast velocity and final desired position). 

Both RoamsIF and RoverIF provide access to a wealth of 
simulation parameters and run-time variables. This enables 
the application to tune the behavior of the simulation and the 
simulated rover vehicles, as well as to monitor and log out- 
put from the rover’s simulated sensor devices (e.g. a wheel 
position encoder, or the outputs of a gyro). 

The RoamsIF interface is continuing to evolve as do the sim- 
ulator and the users needs. A recent addition to RoamsIF 
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Figure 2 4  ROAMS’ graphical user interface 

has been the addition of a “takePicture” methods to generate 
synthetic images from ROAMS hazcam and pancam cam- 
era models. The RoamsIF interface is currently in use by 
JPL‘s Mission Data System [27] and CLARAty [25] projects 
for closed loop rover simulations with ROAMS. We plan to 
convert the current ROAMS closed-loop interface to NASA 
Ames’ Mission Simulation Framework [28] to RoamsIF in 
the near future. 

6 Rover 3D Visualization Models 

proach however turns out to be impractical when used with 
ROAMS which is meant to handle a whole variety of existing 
and new rover models. The primary bottleneck is the lahor- 
intensive process for generating the rover graphics model for 
new rovers to he used in simulations. Moreover, keeping 
such models in sync with parameter updates and changes to 
the kinematics and geometric configuration of the rover has 
to be manually done and is difficult in the hest of circum- 
stances. Due to these difficulties, the graphics models can 
get out of sync with the underlying physics based model and 
can be a source of confusion for users who may rely on the 
graphics feedback to interpret and monitor simulation behav- 
ior. 

We have recently developed a strategy to address these is- 
sues. We have created a utility within ROAMS that can 
auto-generate a VRML “stick” graphics model for the rover 
from the the rover’s kinematics data. The “stick” mnemonic 
for this model reflects the fact that this graphics model only 
contains the backbone information from the rover model and 
is exactly faithful to the underlying kinematics of the rover. 
Thus the location and orientation of all attachment nodes, 
articulation hinges, body center of mass etc. are included in 
the graphics model. Some simple wheel and chassis graph- 
ics objects are attached to the backbone to generate a rea- 
sonable representation of the rover. The left image in Fig- 
ure 25 shows an example of such a stick graphics model. 

ROAMS uses the Dspace 3D graphics tool for visualizing 
simulation output [ I ] .  Dspace displays include graphics 
models of the rover, the terrain environment as well as graph- 
ics “ornaments” to annotate and highlight simulation state 
such as trails, field of view displays, frame axes etc. The 
graphical terrain models are auto-generated from the under- 
lying terrain DEM at run-time so that they are always con- 
sistent with the simulation model of the terrain. 

In the case of rover models, corresponding CAD like graph- 
ical models of the rover are needed to visualize the rover 
behavior during simulations. Unfortunately, even when they 
are available, CAD based graphics models are typically un- 
suitable for use in closed-loop simulations. For one, these 
models are often far too detailed and when used in real- 
time they significantly impact the performance of the sim- 
ulation. Secondly, the instrumentation needed to display the 
rover articulation is absent from CAD models. As a result, 
such models in the past have required labor-intensive pro- 
cessing to either simplify the models and add the articulation 
information in, or to simply create the needed rover graph- 
ics model from scratch. While technically possible, this ap- 

Figure 25: Stick and Xmas rover graphics models 

The key benefits of the stick graphics model are that it is 
auto-generated and hence does not require any manual effort, 
and that it is always consistent with the underlying physical 
model of the rover. This model can he generated for any 
rover - including conceptual ones used for analysis of new 
rover designs. 

The one drawback - though not a serious one - of the stick 
model is that it lacks geometrical information and while 
kinematically accurate may lack the intuitive look of the 
physical rover. To address this concern, we have taken the 
stick model one step further, where a user can attach graph- 
ics components for the various parts of the rover (eg. the 
rockers, the bogeys, the chassis etc.) to the backbone. We 
refer to the resulting model as the “Xmas tree” model since 
the process mimics one of adding ornaments to a Christmas 
tree. The right image in Figure 25 contains an example of the 
Xmas tree version of the stick figure in the left image. When 
generating the Xmas tree model, the user is able to scale, 
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position, rotate the individual graphics parts as needed. We 
have found the combination of the stick and Xmas tree mod- 
els generation capability to be very valuable since it allows 
users to use arbitrary rover designs in the simulation and 
have a good visualization capability right away to accom- 
pany the simulations. In any case, when CAD like models 
for specific rovers are available, users have the option of us- 
ing them instead of the stick or Xmas models. 

I Conclusions 

This paper contains an overview of new ROAMS capabili- 
ties developed beyond what was previously reported in ref- 
erence [l]. While continuing the addition of new model- 
ing functionality such as synthetic stereo camera simulation 
models, there has been a parallel validation effort to validate 
the ROAMS models. The target user for these ROAMS de- 
velopments is NASA's Mars Science Laboratory mission. 
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