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Abstract

In recent years, complementarity techniques have been developed for modeling non-smooth dynamics arising from con-
tact and collision problems for multi-link robotic systems. The commonly used complementarity approach sets up a linear
complementarity problem (LCP) using non-minimal coordinates together with all the unilateral contact constraints and
inter-link hinge and loop closure bilateral constraints onthe system. In this paper, we develop a complementarity for-
mulation that uses an operational space approach. It uses minimal coordinates resulting in a much smaller LCP problem
whose size is independent of the number of bodies and the number of degrees of freedom in the system. Furthermore,
we exploit operational space low-order algorithms to overcome key computational bottlenecks to obtain over an order of
magnitude speed up in the solution procedure.
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1 Introduction

For more than a decade, researchers have been developing complementarity based approaches for formulating and solving
the equations of motion of systems with contact and collision dynamics [1–3]. Examples of such dynamics for robotic
systems include manipulation and grasping tasks such as illustrated in Figure 1, and legged locomotion. The complemen-
tarity approach models bodies as rigid, and uses impulsive dynamics to handle non-smooth collision, contact interactions
and mode transitions. By impulsively “stepping” over non-smooth events, complementarity methods avoid small time step
size and stiffening issues encountered with penalty based methods which allow surface compliance during contact [4].

Figure 1. An example multi-arm robot manipulation task
involving unmounting a wheel from a hub involving several
contact and collision dynamics interaction events.

In this paper, we focus on the analytical and computational as-
pects of a minimal coordinate formulation of the complemen-
tarity approach to contact and collision dynamics for multi-link
systems. This paper further extends the operational space formu-
lation for contact and collision dynamics described in reference
[5]. We adopt the complementarity based physics models from
[2, 3].

The complementarity based solution consists of a combina-
tion of: (a) setting up alinear complementarity problem (LCP)
problem; (b) numerically solving the LCP problem; and (c) an-
cillary dynamics computations. The LCP depends on the link
mass and inertia properties, contact friction parameters,inter-
link bilateral constraints and contact and collision unilateral con-
straints. The LCP solution identifies the unilateral constraints
that are active, and solves for the impulsive forces and velocity
changes that are consistent with the constraints on the system.
Variants of the complementarity approach to handle elasticand
inelastic collisions have also been developed [3]. While LCPfor-
mulations use discretized approximations for the frictioncones,
other researchers have explored non-linear cone complementar-
ity approaches that avoid such approximations [6].

The typical approach to handling contact and collision dynamics is to work with non-minimal coordinates, since it
is the easiest to set up [3]. In this formulation, the LCP stage does most of the work, but the LCP dimension is large
and computationally expensive to solve. For a multi-link system withn links, the standard LCP approach uses 6n non-
minimal coordinates together with the bilateral constraints associated with the inter-link hinges and the unilateralcontact
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constraints. This approach has a mass matrix that is block diagonal and constant. Besides the large LCP problem size,
this formulation requires additional techniques for managing error drift in the bilateral constraints when integrating the
equations of motion.

An alternative approach is to use minimal hinge coordinatesthat automatically eliminate the bilateral constraints
for the inter-link hinges [7]. While the underlying physics remains unchanged, this formulation reduces the size of the
LCP problem, and avoids the need for managing bilateral constraint violation errors for the hinges. However, the use of
minimal coordinates leads to a dense and configuration dependent mass matrix. Thus while minimal coordinates lead to
smaller LCP problems, they also typically significantly increase the difficulty and computational complexity of setting up
the LCP problem. This has been a significant hurdle in the use of minimal coordinate approaches.

In this paper we explore a progression of minimal coordinateformulations that partition the overall solution effort
in different ways between setting up the LCP problem, and solving it. Our goal is to reduce the overall computational
complexity by taking advantage of the smaller dimension of minimal coordinate models together with the host of structure
based, recursive and low-order dynamics algorithms that are available for articulated system dynamics. Notable exam-
ples of such structure based algorithms include the composite rigid body algorithms for computing the mass matrix [8],
the articulated body inertia forward dynamics algorithm [9] and the spatial operator based operational space dynamics
algorithm [10].

The main contribution of this paper is in the development of an operational space basedOS formulation, that while
using minimal coordinates for the contact and collision dynamics problem, uses low-order spatial operator algorithmsto
overcome the complexitys of setting up the LCP problem. Thisresults in a more than an order of magnitude reduction in
computational complexity. The size of the resulting LCP problem is independent of the number of links and generalized
coordinates, and only depends on the number of contact nodes. We also describe extensions of the formulation to handle
elastic and inelastic collision dynamics. The different formulations are developed and described in a way so as to clarify
the relationships among them and methods available in the literature.

We use a multi-link pendulum numerical problem to quantitatively and parameterically measure the performance
improvements from the new OS formulation. We have also applied the OS formulation to simulate manipulations tasks
involving contact and collision interactions for a dual-arm robot system. This dual-arm robot is used as a reference system
to compare the LCP sizes for the different formulations discussed in this article.

The organization of this paper is as follows. Section 2 describes the complementarity conditions associated with
modeling a single unilateral contact constraint. In Section 3 we describe the system-level, multiple contactsNMC LCP
formulation based on non-minimal coordinates that is widely used. While easy to set up, this formulation leads to a large
LCP problem. Section 4 discusses a similarMC formulation based on the use of minimal coordinates. We observe that
the reduction in the size of the LCP is accompanied by an increase in the complexity of setting up the LCP. Section 5
further transforms the MC LCP formulation to develop theRMC formulation that further reduces the size of the LCP
problem, but at the cost of an increase in the LCP setup complexity. Section 6 develops theOSformulation that is based
on an operational space approach. While the LCP size is moderately larger than from the RMC approach, it opens the
path to exploiting low-order operational space algorithmsto significantly reduce the LCP setup complexity. Section 7
extends the OS formulation contact dynamics model to include elastic and inelastic collision dynamics. Section 8 focuses
on computational issues, and describes operational space computational algorithms to reduce the complexity of setting
up the OS LCP problem. The section also includes results froma numerical simulation to quantify the performance
improvements for the OS formulation.

2 Unilateral contact constraints

Unilateral constraints are defined by inequality relationships of the form

d(θ, t) > 0 (1)

for some functiond of the configuration coordinatesθ and timet. As an example, the non-penetration condition for
rigid bodies can be stated as an inequality relationship requiring that the distance between the surfaces of rigid bodies be
non-negative.d(θ, t) is generally referred to as thedistanceor gapfunction.

Contact occurs at the constraint boundary, i.e., whend(θ, t) = 0. For bodies in contact, the surface normals at
the contact point are parallel. The existence of contact is typically determined using geometric or collision detection
techniques. For a pair of bodiesA andB in contact, we use a convention where theith contact normal̂n(i) is defined
as pointing from bodyB towards bodyA, so that motion ofA in the direction of the normal leads to a separation of the
bodies. A unilateral constraint is said to be in anactivestate when

d(θ, t) = ḋ(θ, t) = d̈(θ, t) = 0 (2)
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Thus, a unilateral constraint is active when there is contact, and the contact persists. Only active constraints generate
constraint forces on the system. A constraint that is not active is said to beinactive. Contactseparationoccurs when
the relative linear velocity of the contact points along thenormal becomes positive and the contact points drift apart.A
separating constraint is in the process of losing contact and transitioning to an inactive state. At the start of a separation
event, we have

d(θ, t) = ḋ(θ, t) = 0 and d̈(θ, t) > 0 (3)

2.1 Contact impulse for an active contact constraint

polyhedral
approximation

direction
vectors

Figure 2. Polyhedral approximation
of the friction cone.

We now describe contact force modeling using the approach inreferences [2, 3]. The
6-dimensional spatial impulse at theith active contact constraint node has a zero an-
gular moment component. Its non-zero linear impulse componentFu(i) ∈ R3 can be
decomposed into normal and tangential (friction impulse) components

Fu(i) = Fn(i)n̂(i) + Ft(i)t̂(i) (4)

wheret̂(i) denotes a tangent plane vector for theith contact pair. Assuming that the
friction coefficient isµ(i), the magnitude of the tangential Coulomb frictional impulse
is bounded by the magnitude of the normal component as follows:

‖Ft(i)‖ 6 µ(i)Fn(i) (5)

When the bodies have non-zero relative linear velocities at the contact point, the con-
tact is said to be aslidingcontact. Otherwise, when the relative linear velocity is zero,
the contact is said to be arolling contact. During sliding, the tangential frictional im-
pulse is in a direction opposing the linear velocity vector (which necessarily lies in the
contact tangent plane) and Eq. 5 holds with an equality. Thus, the tangential friction impulse is on the boundary of the
cone defined by Eq. 5 when sliding, and in the interior of the cone when rolling.

For the purpose of numerical computation, the friction coneat theith contact is approximated by a friction polyhedron
consisting of a finite number,nf, of unit direction vectorŝdj(i) in the tangent plane (see Figure 2.1). It is assumed that
for each direction vector, its opposite direction vector isalso in the set. For notational simplicity, we assume thatnf is
the same across all contact points. Theith contact tangential frictional impulse is expressed as the linear combination of
these direction vectors as follows:

Ft(i)t̂(i) =

nf∑

j=1

βj(i)d̂j(i) = D(i)β(i) (6)

where
D(i)

△
=
[
d̂1(i), · · · , d̂nf

(i)
]

∈ R3×nf and β(i)
△
= col {βj(i)}

nf

j=1 ∈ Rnf

Combining Eq. 4 and Eq. 6 we have

Fu(i) = D(i)β(i), where β(i)
△
=

[
Fn(i)

β(i)

]
∈ Rnf+1 and D(i)

△
=
[
n̂(i), D(i)

]
∈ R3×(nf+1) (7)

During sliding, theβj(i) component is non-zero and equal toµ(i)Fn(i) for just the single directionj that corresponds to
the closest direction opposing the (tangential) relative linear velocity. In other words, withσ(i) denoting the magnitude
of the contact relative linear velocity,

βk(i) =

{
µ(i)Fn(i)1[k=j] if σ(i) > 0

0 if σ(i) = 0
(8)

In the above,1[<cond>] denotes the indicator function whose value is 1 if the condition is true, and 0 otherwise.

2.2 Complementarity relationship for a unilateral contact

We begin by defining complementarity conditions. Letf(z) ∈ Rn denote a function of a vectorz ∈ Rn, whosezi
elements have lower and upper boundsli andui respectively. Thecomplementarity condition, f(z) ⊥ z, is said to hold
when the following properties apply:
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• fi(z) > 0 whenzi = li

• fi(z) 6 0 whenzi = ui

• fi(z) = 0 whenli < zi < ui

Typically the bounds areli = 0 andui = ∞, and we will assume this to be the case unless otherwise stated. For these
bounds, the elements off(z) andz are non-negative, and the complementarity condition requires that for anyi, only one
of fi or zi can be positive. A complementarity condition is alinear complementarity conditionwhenf(z) has the form
Mz+ q ⊥ z for some matrixM and vectorq. Thus for an LCP

M z+ q ⊥ z (9)

We have amixed complementarity conditionwhen one or more of the rows off(z) are exactly equal to zero, i.e. the
bounds for one or more of the rows areli = −∞ andui = ∞. Such identically zero rows represent equality conditions
while the remainder are complementarity (inequality) conditions.

The sliding/rolling contact relationships described above can be rephrased as the following complementarity condi-
tions1:

n̂∗(i)v+u(i) ⊥ Fn(i) (separation) (10a)

σ(i)E(i) +D∗(i)v+u(i) ⊥ β(i) (friction force direction) (10b)

µ(i)Fn(i) − E
∗(i)β(i) ⊥ σ(i) (friction force magnitude) (10c)

where
E(i)

△
= col {1}nf

j=1 ∈ Rnf (11)

andv+u(i) ∈ R3 denotes the relative linear velocity of the first bodyA with respect to the second bodyB. The component
of this relative linear velocity along the contact normal is, n̂∗(i)v+u(i). A positive value implies increasing separation
between the bodies, while a negative value indicates that the bodies are approaching each other. Eq. 10a states that this
velocity component and the normal interaction impulseFn(i) cannot both be simultaneously positive. Thus the interaction
impulse must be zero when the bodies are separating, and the impulse can be non-zero only if we have sustained contact.
Eq. 10b implies that the tangential friction impulse opposes the tangential relative linear velocity, while Eq. 10c states that
the magnitude of the tangential impulse is on the friction cone boundary when the the tangential relative linear velocity is
non-zero.

The complementarity conditions in Eq. 10 enforce the no inter-penetration constraint at the velocity instead of at the
gap level. Hence they are valid only when the gap is zero, i.e., when contact exists [3]. Using Eq. 7, Eq. 10 can be
expressed more compactly as

Ê(i)σ(i) +D∗(i)v+u(i) ⊥ β(i)

Ē(i)β(i) ⊥ σ(i)
(12)

where

Ê(i)
△
=

[
0

E(i)

]
∈ R(nf+1) and Ē(i)

△
= [µ(i), −E∗(i)] ∈ R1×(nf+1) (13)

With nu denoting the number of unilateral contact nodes, the component level complementarity conditions in Eq. 12 can
be aggregated across all the contact constraints and expressed at the system level as:

Êσ+D∗v+u ⊥ β and Ēβ ⊥ σ (14)

where
β

△
= col

{
β(i)

}nu

i=1
∈ Rnu(nf+1), σ

△
= col {σ(i)}nu

i=1 ∈ Rnu

D
△
= diag{D(i)}nu

i=1 ∈ R3nu×nu(nf+1), Ê
△
= diag

{
Ê(i)

}nu

i=1 ∈ Rnu(nf+1)×nu

and Ē
△
= diag

{
Ē(i)

}nu

i=1 ∈ Rnu×nu(nf+1), v+u
△
= col

{
v+u(i)

}nu

i=1 ∈ R3nu

(15)

Also, Eq. 7 can be restated at the system level as

Fu = Dβ where Fu
△
= col {Fu(i)}

nu

i=1 ∈ R3nu (16)

1For a vector/matrixA, theA∗ notation denotes its vector/matrix transpose.
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3 Non-minimal coordinates (NMC) LCP formulation

bilateral
constraints

Figure 3. Fully augmented
model with hinges modeled as
constraints.

In this section we derive the commonly used non-minimal coordinate LCP formulation for
contact dynamics based on the approach in [3]. We refer to this formulation as thenon-
minimal coordinates (NMC)formulation.

Contact and collision dynamics models build upon smooth dynamics models. The
smooth dynamics model used by the NMC method treats all the links in the system as
independent bodies, and all coupling hinges as explicit bilateral constraints as illustrated
in Figure 3. Such a smooth dynamics model utilizes non-minimal coordinates and is also
referred to as afully augmented (FA)model [11].

Letn denote the number of links in the system, andN the number of system degrees of
freedom in the absence of bilateral constraints. For the FA modelN = 6n. Letnb denote
the dimension of the bilateral constraints arising from inter-link hinges and loop closure
constraints on the system. Withx denoting the vector of positional and attitude coordinates
for the links, letV ∈ R6n denote the stacked vector of spatial velocities of all the links.
Then there exists aGb(x, t) ∈ Rnb×6n matrix and aU(t) ∈ Rnb vector that define the
following velocity domain constraint equation for the bilateral constraints on the system:

Gb(x, t)V = U(t) (17)

We assume thatGb(x, t) is a full-rank matrix. Observe that Eq. 17 is linear inV. The bilateral constraints effectively
reduce the independent degrees of freedom for the system from N to (N − nb). The bilateral constraints are accounted
for via Lagrange multipliers, λ ∈ Rnb to yield the following smooth equations of motion for the system

Mα−G∗
b(x, t)λ = C(x,V)

Gb(x, t)V = U(t)
(18)

whereα ∈ R6n denotes the spatial acceleration of the bodies.M ∈ R6n×6n is a block diagonal matrix with the 6× 6
spatial inertias of each of the links along the diagonal.C ∈ R6n is a vector of the velocity dependent Coriolis and
external forces on the system. The−G∗

b(x, t)λ term in the first equation represents the constraint forces from the bilateral
constraints. Differentiating the Eq. 17 constraint equation, Eq. 18 can be rearranged into the following descriptor form:

(
M −G∗

b

Gb 0

)[
α

λ

]
=

[
C

Ū

]
where Ū

△
= U̇ − ĠbV ∈ Rnb (19)

An attractive feature of these smooth equations of motion isthat theM matrix is block diagonal and constant. Using the
following discrete time Euler step approximation over a∆t time interval,2

V+ − V− = α∆t and pb
△
= λ∆t ∈ Rnb (20)

the differential form of the equations of motion in Eq. 19 canbe transformed into the following discretized version that
maps thepb impulse stacked vector at the bilateral constraint nodes into the resulting change in body spatial velocities.

(
M −G∗

b

Gb 0

)[
V+ − V−

pb

]
=

[
C∆t

Ū∆t

]
(21)

3.1 Including contact impulses

The stacked vector of relative linear velocities across thecontact nodes is denotedvu ∈ R3nu . It is related to the stacked
vector of body spatial velocitiesV via the following relationship

vu = GuV (22)

where theGu ∈ R3nu×6n matrix contains one block-row per contact node-pair, with each row mapping the spatial
velocities for a node pair into the relative linear velocityacross the contact. TheGu matrix also relates theFu equal

2The− and+ superscripts denote the respective value of a quantity justbefore and after the application of an impulse.
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and opposite impulses at the contact node-pairs to the corresponding spatial impulses on the bodies,pu ∈ R6n via the
following dual mapping

pu = G∗
uFu (23)

Thepu contact impulses can be included in the Eq. 21 smooth equations of motion by addingpu to theC∆t term to
obtain (

M −G∗
b

Gb 0

)[
V+ − V−

pb

]
=

[
C∆t + pu

Ū∆t

]
(24)

3.2 Assembling the system LCP

We now set up an LCP to help solve the equations of motion and the the unknown constraint forces. From Eq. 16 and
Eq. 23 we have

Fu = Dβ ⇒ pu = G∗
uDβ (25)

Thus Eq. 24 can be recast as
(
M −G∗

b −G∗
uD

Gb 0 0

)

V+ − V−

pb

β


 =

[
C∆t

Ū∆t

]
(26)

Combining this with the complementarity conditions in Eq. 14 leads to the following NMC formulation of the LCP in
Eq. 9:

M
△
=




M −G∗
b −G∗

uD 0

Gb 0 0 0

D∗Gu 0 0 Ê

0 0 Ē 0


 , z

△
=




V+

pb

β

σ


 , q

△
=




−MV− − C∆t

−GbV
− − Ū∆t

0

0


 (27)

This is a mixed LCP problem, where the first two rows are equality conditions, while the lower two rows are comple-
mentarity conditions. This NMC LCP formulation is essentially the one described in [3]. It makes use of non-minimal
coordinates for the articulated system and is of size(6n+ nb + nu(nf + 2)). The constant and block-diagonal structure
of M results inM having a simple and highly sparse structure. The complexityof assemblingM andq for the LCP is
justO(n). Reference [3] derives sufficient conditions for the existence of a solution for the LCP problem.

The solution of the Eq. 27 LCP provides newV+ velocity coordinates which can be numerically integrated to prop-
agate thex configuration coordinates. The solution values ofβ indicate which contacts are active or inactive, while the
values ofσ define the rolling or sliding state of each of the active contacts. Thus an LCP solution withFu(i) positive
indicates that theith contact isactive. Furthermore,σ(i) = 0 implies that theith contact is arolling contactwhile a
positive value implies that it is aslidingcontact.

In the NMC formulation, the LCP does virtually all the work, and the complexity of setting up the LCP is relative low.
The main disadvantage of this formulation is the large size of the LCP and the consequent large complexity of solving it.
Moreover, the use of non-minimal coordinates requires the additional use of constraint

bilateral
constraint

Figure 4. Tree augmented model with
only loop closures modeled as bilateral
constraints.

error stabilization schemes to avoid the build up of constraint violation errors for
the bilateral constraints.

We will use the dual-arm robot in Figure 1 to track and comparethe LCP size
for this formulation and the ones to follow. This dual-arm platform has a 4 link
sensor head, a pair of 7 link arms, with each arm having a 3 finger hand for an
overall system with 26 links and 26 degrees of freedom. It hasno loop closure
bilateral constraints. Thusn = 26, N = 6n = 156, andnb = 5n = 130. For
this exercise we assume thatnf = 4, and that there are 4 contact constraints. With
these parameters, the size of the NMC LCP is 310 for the dual-arm system. The
statistics for the NMC scheme are also summarized in the firstcolumn of Table 1
in Section 6.

4 Minimal coordinate (MC) LCP formulation

In contrast with the NMC formulation, in theminimal coordinates (MC)formu-
lation, inter-link hinges are not modeled as bilateral constraints. Instead, minimal
hinge coordinates are used to parameterize the permissiblehinge motion. In doing
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so, the number of coordinates associated with the hinge match the number of degrees of freedom for the hinge. This
approach is used for all the hinges in a spanning tree for the system graph, and bilateral constraints are used only for
additional loop closures that may be present in the system topology as illustrated in Figure 4.

Except for the switch from non-minimal to minimal coordinates, the development of the MC formulation largely
parallels that for the NMC formulation. Hence wherever possible, we reuse the earlier notation, with the understanding
that the meaning of the symbols depends on the formulation context. Thus once again, we useN to denote the number
of degrees of freedom for the tree sub-system. Withθ ∈ RN denoting the vector of hinge coordinates, the minimal
coordinates equations of motion for the smooth dynamics of just the tree-topology sub-system can be expressed as

M(θ)θ̈+ C(θ, θ̇) = T (28)

where the configuration dependent matrixM(θ) ∈ RN×N is themass matrixof the system,C(θ, θ̇) ∈ RN denotes the
velocity dependent Coriolis and gyroscopic forces vector,andT ∈ RN denotes the applied generalized forces. The mass
matrix is symmetric and positive-definite for tree-topology systems. The configuration dependency and dense structure
of M makes it clearly more complex than the sparse structure and constant value of theM mass matrix in the NMC
formulation. On the other hand, for the dual-arm robot system in Figure 1,M is a compact 26-dimensional square matrix
compared with the 156-dimensional square matrixM.

Let nb denote the dimension of the bilateral constraints on the system arising from the loop closures in the system.
Sincenb applies only to loop bilateral constraints, it is much smaller thannb in the MC formulation. There exists a
Gb(θ, t) ∈ Rnb×N matrix and aU(t) ∈ Rnb vector that defines the velocity domain constraint equationas follows:

Gb(θ, t)θ̇ = U(t) (29)

Once again we assume thatGb(θ, t) is afull-rank matrix.
The smooth dynamics of closed-chain systems can be obtainedby modifying the tree system dynamics in Eq. 28 to

include the effect of the bilateral constraints viaLagrange multipliers, λ ∈ Rnb , as follows

M(θ)θ̈+ C(θ, θ̇) −G∗
b(θ, t)λ = T

Gb(θ, t)θ̇ = U(t)
(30)

By differentiating the bilateral constraint equation Eq. 29, and including in the average force from thepu ∈ RN contact
impulse, Eq. 30 can be rearranged into the following descriptor form:

(
M −G∗

b

Gb 0

)[
θ̈

λ

]
=

[
T − C+ pu/∆t

Ū

]
where Ū

△
= U̇(t) − Ġbθ̇ ∈ Rnc (31)

Using the discrete Euler step approximation
θ̇+ − θ̇− = θ̈∆t (32)

the discretized version of Eq. 31 takes the form
(

M −G∗
b

Gb 0

)[
θ̇+ − θ̇−

pb

]
=

[
(T − C)∆t + pu

Ū∆t

]
with pb

△
= λ∆t (33)

With Gu ∈ R3nu×N such that
vu = Guθ̇ (34)

the dual expression for the contact spatial impulses is given by

pu = G∗
uFu

16
= G∗

uDβ (35)

Combining the complementarity conditions in Eq. 14 with Eq.33 leads to the MC formulation version of the Eq. 9 LCP
with

M
△
=




M −G∗
b −G∗

uD 0

Gb 0 0 0

D∗Gu 0 0 Ê

0 0 Ē 0


 , z

△
=




θ̇+

pb

β

σ


 , q

△
=




−Mθ̇− − (T − C)∆t

−Gbθ̇
− − Ū∆t

0

0


 (36)
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This is a mixed LCP with the top two rows correspond to equality conditions while the lower two are complementarity
conditions. Its structure is very similar to the NMC formulation LCP in Eq. 27 and differs primarily in the use of minimal
coordinates. The size of the MC LCP is(N + nb + nu(nf + 2)). Unlike the NMC formulation, this dimension does not
depend on the number of linksn. SinceN is much smaller when using minimal coordinates, the MC LCP size is much
smaller than the NMC LCP size. For the dual arm robot in Figure1, the dimension of the MC LCP is just 50 compared
with 310 for the NCP formulation.

On the other hand, evaluatingM for the MC LCP requires the configuration dependent and denseM matrix. While
the composite rigid body inertia algorithm provides an efficient way to computeM [8], the computational complexity
scales asO(N2). Thus the decrease in the LCP size and solution complexity for the MC formulation are accompanied by
an increase in the complexity of setting up the LCP. The cost complexity for the MC formulation is also summarized in
Table 1. The solution of the MC LCP yields the newθ̇+ generalized velocity value which can be integrated to propagate
theθ configuration coordinates. As in the case of the NMC formulation, the bulk of the computational effort in the MC
formulation is in setting up and solving the LCP problem.

5 Reduced minimal coordinate (RMC) LCP formulation

Continuing with the minimal coordinate approach, we now take further steps to reduce the size of the LCP problem. The
matrix on the left of Eq. 31 can be inverted to yield the following solution forθ̈:

θ̈f
△
= M−1 [T − C+ pu/∆t] (37a)

λ =
[
GbM

−1G∗
b

]−1
(−Gbθ̈f + Ū) (37b)

θ̈ = θ̈f +M−1G∗
b λ

37b
=

[
I−M−1G∗

b

[
GbM

−1G∗
b

]−1
Gb

]
θ̈f +M−1G∗

b

[
GbM

−1G∗
b

]−1
Ū (37c)

Using Eq. 32, we obtain

θ̇+
32
= θ̇− + θ̈∆t
37c
= θ̇− +

[
I−M−1G∗

b

[
GbM

−1G∗
b

]−1
Gb

]
∆tθ̈f +M−1G∗

b

[
GbM

−1G∗
b

]−1
∆tŪ

37a
= Ypu + X

(38)

where
Y

△
= M−1 −M−1G∗

b(GbM
−1G∗

b)
−1GbM

−1 ∈ RN×N

and X
△
= θ̇− + Y(T − C)∆t +M−1G∗

b

[
GbM

−1G∗
b

]−1
Ū∆t ∈ RN

(39)

Thus
D∗v+u

34
= D∗Guθ̇

+ 35,38
= D∗GuY G

∗
uDβ+D∗GuX (40)

Using this allows us to eliminatėθ+ andpb from the MC LCP formulation in Eq. 36 to obtain the followingReduced
Minimal Coordinate (RMC)formulation LCP:

M
△
=

(
D∗GuY G∗

uD Ê

Ē 0

)
, z

△
=

[
β

σ

]
, q

△
=

[
D∗GuX

0

]
(41)

Since there are no equality conditions, this is a standard rather than a mixed LCP. The size of this RMC LCP isnu(nf+2).
It is notable that the size of the LCP does not depend on the number of linksn, the number of degrees of freedomN, nor the
nb dimension of the bilateral constraints. It only depends on the number of contact constraint nodes. Thus the dimension
of this LCP is even smaller than that for the MC formulation. For the dual arm robot system, the dimension of the LCP is
24. On the other hand, computingM for the RMC LCP requires theY matrix in Eq. 39, which requires the configuration
dependentM−1 matrix and several expensive matrix/matrix products. These computations are ofO(N3) computational
complexity. Once again, while the RMC formulation has successfully reduced the LCP size and consequently its solution
complexity, this reduction has been accompanied by a significant increase in the complexity of setting up the LCP problem.
The cost complexity for the RMC formulation is summarized inTable 1.

In contrast with the NMC and MC formulations, the solution ofthe RMC LCP does not by itself yield the new system
velocity or state. Instead the following sequence of steps is needed to obtain the new state values:
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1. Assemble and solve the RMC LCP in Eq. 41 to obtainβ andσ. Useβ in Eq. 35 to obtain thepu contact impulse
vector.

2. Usepu in Eq. 38 to compute the neẇθ+ system velocity. This can be integrated to obtain the new system configu-
ration coordinatesθ.

Thus, the RMC LCP by itself does not do all the work, and the additional step (2) is needed to complete the computation
of the newθ̇+ system velocity coordinates.

The formulation developed by Trinkle [2] is a hybrid combination of the NMC and RMC formulations. Trinkle’s setup
allows the use of general coordinates for describing the smooth equations of motion. However, instead of eliminating the
hinge bilateral constraints by using minimal hinge coordinates a pair of symmetric (positive and negative) complemen-
tarity conditions are added to enforce the equality condition for each hinge constraint. This inflates the size of the LCP
much like the NMC approach. However, Trinkle;s approach is similar to the RMC in eliminating the velocity coordinates
and the loop closure bilateral constraint Lagrange multipliers from the LCP problem to obtain an LCP similar in form to
Eq. 41.

6 Operational space (OS) LCP formulation

So far we have found that the reductions in LCP size have had the side-effect of increasing the LCP setup complexity. In
this section we look into reducing such setup complexity using low-order articulated system dynamics algorithms. From
Eq. 31 we have

0
29
= Gbθ̈− Ū

31
= GbM

−1 [T − C+G∗
bλ+ pu/∆t] − Ū

= GbM
−1G∗

bλ+GbM
−1pu/∆t + α

f
b where αfb

△
= GbM

−1(T − C) − Ū

35
= GbM

−1G∗
bλ+GbM

−1G∗
uDβ/∆t + α

f
b

(42)

The above expression characterizes the equality conditionon the dynamics from the bilateral constraints. The relative
linear acceleration of the contact nodes is obtained by differentiating Eq. 34 to obtain

v̇u = Guθ̈+ Ġuθ̇
31
= GuM

−1 [T − C+G∗
bλ+ pu/∆t] + Ġuθ̇ (43)

The discretized approximation(v+u − v−u) = v̇u∆t of this equation leads to

v+u
35, 43
= GuM

−1G∗
bλ∆t +GuM

−1G∗
uDβ+ v−u + αfu∆t where αfu

△
= GuM

−1(T − C) + Ġuθ̇ (44)

Combining the complementarity conditions in Eq. 14 with Eq.42 and Eq. 44 yields the following mixed LCP for the
system:

M
△
=




GbM
−1G∗

b GbM
−1G∗

uD 0

D∗GuM−1G∗
b D∗GuM−1G∗

uD Ê

0 Ē 0


 , z

△
=



pb

β

σ


 , q

△
=




αfb∆t

D∗(v−u + αfu∆t)

0


 (45)

ThisM matrix still requires the configuration dependentM−1 matrix whose evaluation if ofO(N3) computational com-
plexity. We next look more closely at the structure of theGu andGb matrices.

The unilateral and bilateral constraints are associated with nodes on the bodies. Let us denote the number of this
overall set of nodes involved in the unilateral and bilateral constraints asnc. Denoting the spatial velocities of these nodes
by the stacked vectorVc ∈ R6nc , there exist matricesQu ∈ R3nu×6nc andQb ∈ Rnb×6nc such that the unilateral and
bilateral velocity constraint equations can be expressed as3

vu = QuVc and QbVc = U (46)

Let J ∈ R6nc×N denote the Jacobian for the constraint nodes, so that

Vc = Jθ̇ (47)

3Qu has the same structure as theQb constraint mapping matrix for bilateral constraints for three degree of freedom spherical hinges.
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It follows from Eq. 29, Eq. 34, Eq. 46 and Eq. 47 thatGu andGb have the following form:

Gu = QuJ and Gb = QbJ (48)

With
Λ

△
= JM−1J∗ ∈ R6nc×6nc (49)

we can use Eq. 48 to re-expressM in Eq. 45 as

M =




QbΛQ
∗
b QbΛQ

∗
uD 0

D∗QuΛQ∗
b D∗QuΛQ∗

uD Ê

0 Ē 0


 =




[
Qb

D∗Qu

]
Λ [Q∗

b, Q∗
uD]

0

Ê

0 Ē 0


 (50)

TheΛ = JM−1J∗ matrix definition in Eq. 49 is precisely the mathematical expression for the inverse of theoperational
space inertiamatrix that is used in the operational space approach for robot manipulation and control [12, 13]. Based
on this structural similarity, we borrow and extend the operational space terminology to our current context with the
constraint nodes forming the operational space nodes. Also, borrowing terminology, we refer toΛ as theoperational
space compliance matrix (OSCM)matrix. The invertibility ofΛ does not depend onJ being invertible – only thatJ have
full row-rank. When it exists, the inverse ofΛ is referred to as theoperational space inertia. The properties of the OSCM
are discussed in detail in [10].

The property of theΛmatrix that is of importance for us is the availability of algorithms ofO(N) +O(n2
c) computa-

tional complexity for evaluatingΛ [10, 14]. The low-order of these algorithms is remarkable given the presence ofM−1

in the expression forΛ, since evaluatingM andM−1 individually requireO(N2) andO(N3) computations respectively.
This algorithm reduces the complexity of evaluatingM in Eq. 50 fromO(N3) to the much smallerO(N) +O(n2

c) com-
putational complexity. The low complexity algorithm for evaluatingΛ is based on an analytical transformation of Eq. 49,
followed by a disjoint decomposition of the matrix into block diagonal, and upper and lower triangular components that
can be computed recursively. A summary of this structure-based analysis and accompanying algorithms using spatial
operator techniques is described in the appendix. An alternative sparsity based technique for evaluatingΛ is described in
reference [15].

With θ̈f
△
= M−1(T − C),

αfb
42,48
= QbJθ̈f − Ū

31,47
= Qb(Jθ̈f + J̇θ̇) + Q̇bVc − U̇ = Qbα

f + Q̇bVc − U̇

αfu
44,48
= QuJθ̈f + Ġu

47
= Qu(Jθ̈f + J̇θ̇) + Q̇uVc = Quα

f + Q̇uVc

(51)

where
αf = Jθ̈f + J̇θ̇ (52)

Physically,αf is the stacked vector of spatial accelerations of the constraint nodes in the absence of the bilateral and
contact constraints.

Using Eq. 50 and Eq. 51, the Eq. 45 LCP can be re-expressed as the following Operational Space (OS)formulation
LCP:

M
△
=




[
Qb

D∗Qu

]
Λ [Q∗

b, Q∗
uD]

0

Ê

0 Ē 0


 , z

△
=



pb

β

σ


 , q

△
=




[
Qb

D∗Qu

]
∆tα

f +

[
Q̇b

D∗Q̇u

]
∆tVc +

[
−U̇

D∗v−u

]

0




(53)
This is a mixed LCP, with the first row corresponding to an equality condition while the bottom two rows correspond to
complementarity conditions. The size of this LCP is(nb + nu(nf + 2)). Like the RMC formulation, the size of this
LCP does not depend on the number of linksn or the number of degrees of freedomN, but it does depend on thenb
dimension of the loop closure bilateral constraints. The dimension of the OS LCP is moderately larger than the RMC
LCP but smaller than the MC LCP. Typically,Q̇u, Q̇b andU̇ are all zero leading to a simplerq in Eq. 53. For the dual arm
robot system, the dimension of the OS LCP is 24.

ComputingM for the OS LCP requires the configuration dependentΛ matrix Eq. 53 whose evaluation is ofO(N) +
O(n2

c) computational complexity which is much smaller than theO(N3) complexity for evaluatingM for the RMC
method. Thus in comparison with the RMC formulation, while the OS formulation increases the size of the LCP by a
modestnb, it drastically reduces the LCP setup complexity. The result is a significant reduction in the overall complexity
of the contact dynamics computations for the OS formulation.
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Like the RMC formulations, the solution of the LCP does not byitself yield the new system velocity or state. Instead
the following sequence of steps is needed to obtain the new state values:

1. Assemble and solve the OS LCP in Eq. 53 to obtainpb, β andσ. Useβ in Eq. 35 to obtain thepu contact impulse
vector.

2. Usepb andpu in Eq. 33 to obtain the neẇθ+ system velocity using theO(N) articulated body forward dynamics
algorithm. This can be integrated to obtain the new system configuration coordinatesθ.

Like the RMC formulation, the LCP by itself does not do all thework in the OS formulation, but instead the additional
step (2) is needed to complete the computation of the newθ̇+ system velocity coordinates.

LCP Formulation
Property NMC MC RMC OS

Coordinates type Non-minimal Minimal Minimal Minimal

LCP assembly complexity O(n) O(N2) O(N3) O(N) +O(n2
c)

LCP dimension 6n+ nb + nu(nf + 2) N + nb + nu(nf + 2) nu(nf + 2) nb + nu(nf + 2)

Dual-arm LCP dimension 310 50 24 24

Ancillary dynamics steps None None Evaluatepu andθ̇+ Evaluatepu andθ̇+

Table 1. A comparison of the features of the different NMC, MC, RMC and OS formulations for contact and collision dynamics.
The LCP dimension size is for the reference dual-arm robot problem, whilethe LCP assembly complexity highlights just the major
contributors.

The LCP formulation developed by Yamane and Nakamura [7] makes use of thedivide and conquer algorithm (DCA)
[16] techniques and is a special case of the OS formulation. The OS formulation here is however more general since it
handles loop closure bilateral constraints, exploits operational space techniques to reduce computational complixity, and
as described later, handles collision dynamics.

Table 1 summarizes the dimensions and computational compleixty for all the formulations discussed so far. The trend
across the NMC, MC and RMC formulations is that the reductionin the size of the LCP shifts costs to the LCP setup
process. While the initial form of the OS formulation LCP in Eq. 45 also follows this trend, the restructured Eq. 53 LCP
breaks the pattern by restructuring the LCP to take advantage of low-order, structure-based algorithms for articulated
system dynamics.

7 Collision dynamics

In this section we develop extensions to the OS LCP formulation for handling the dynamics of collision events. During
inelastic collisions some of the impact energy is lost. Thecoefficient of restitution, ǫ(i) defines the fraction that remains
after a collision. The complementarity approach to modeling collisions breaks up the collision event into a pair of instan-
taneouscompressionanddecompressionphases [3]. During the compression phase, the collision impulse is stored, and
during decompression, a fraction of the collision impulse is recovered. We will make use of time discretized equations
with impulses developed for contact dynamics, but with∆t = 0 since collision events are instantaneous.

7.1 Compression

At theith contact undergoing collision, the compression phase is instantaneous and impulsively changes the relative linear
contact velocity fromv−u(i) to a newv+c (i) value with a non-negative normal component. The compression impulse is
denotedpc(i). The mixed LCP problem for the compression phase is obtainedby setting∆t = 0 in Eq. 53 to obtain

w = Mz+ q ⊥ z with q
△
=




[
−U̇

D∗v−u

]

0


 (54)
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The LCP solution is used to instantaneously (i.e. impulsively) propagate the state for the compression phase as follows:

pc = Q∗
uD β+ Q∗

bpb

θ̇c = θ̇− +M−1J∗pc

v+c = Jθ̇c

(55)

7.2 Decompression

The decompression phase applies an additional impulse of magnitudeǫ(i)[0, n̂∗(i)pc(i)] for the ith contact along the
normal from the impulse stored during the compression phase. The recoveredϑ decompression impulse is

ϑ
△
= col {(ǫ(i)[0, n̂∗(i)]pc(i)) n̂(i)}

nu

i=1 ∈ R3nu (56)

The decompression LCP is obtained by updating Eq. 42 and Eq. 43 to include the additionalϑ impulse. This leads to a
decompression LCP problem that is the mixed LCP in Eq. 53 with∆t = 0, the contact linear velocityv−u replaced with

v+c , and an additional

[
Qb

D∗Qu

]
ΛQ∗

uϑ term for the recovered impulse included in theq LCP vector term. The resulting

decompression phase LCP is

w = Mz+ q ⊥ z with q
△
=




[
−U̇

D∗v+c

]
+

[
Qb

D∗Qu

]
ΛQ∗

uϑ

0


 (57)

The LCP solution for the decompression impulse can include additional contact impulse terms that ensure that the normal
component of the relative linear velocity at the end of the decompression step remains non-negative. The LCP solution is
used to instantaneously propagate the state for the decompression phase as follows:

p = Q∗
uD β+ Q∗

bλ+ Q∗
uϑ

θ̇+ = θ̇c +M−1J∗p
(58)

Whenǫ(i) = 0, the collision is completely inelastic, and there is no decompression phase. However, in general, each
collision event requires the solution of two LCP’s in this approach.

8 Simulation results

We use a simulation of a multi-link pendulum colliding with itself and the environment to quantitatively evaluate the per-
formance of the OS formulation. This example also allows us to parameterically measure the performance improvement
as a function of the problem dimension by varying the number of links in the pendulum. The environment consists of a
floor and a wall located 4m away. The multi-link pendulum consists ofn identical 1kg mass spherical bodies connected
with pin hinges. The radius of the sphere is scaled based on the number of links to maintain a 12m overall length of the
pendulum. The pendulum base is located at a height of 10m. Theopen source Bullet software [17] is used for collision
detection, and the PATH software [18] for solving mixed complementarity problems. The simulation uses a time step of
0.1ms, with a 0.5 coefficient of friction and a 0.7 coefficientof restitution to simulate inelastic collisions. The pendulum
starts at an angle ofπ/4 radians with an initial angular velocity of 1 radian/s and agravitational acceleration of 9.8m/s2.

As the pendulum swings from left to right, it collides with the ground, bounces off of the ground, and eventually
collides with the wall on the right. In the course of the sequence, multiple links are at times in collision with the ground,
the wall and with each other. Figure 5 contains a sequence of screen shots from such a simulation for a 12-link pendulum.
A video of the simulation is included in the media clips accompanying this article. We have simulated this contact and
collision dynamics scenario using two different techniques. The first technique is the minimal coordinate OS formulation
described in Section 6.

The second technique, that we refer to as theNMC/OS formulation, is a non-minimal coordinate variant of the OS
formulation. Similar to the NMC method, each link is treatedas an independent body, and the hinges are handled as
bilateral constraints between the neighboring links withnb = 6n −N. The NMC/OS LCP has the same form as the OS
LCP in Eq. 53, except that the OSCM is the non-minimal coordinateΛ = JM−1J∗, instead of Eq. 49. The NMC/OSΛ
is a much larger matrix but with a simple block diagonal structure. This NMC/OS LCP does not include system velocity
coordinatesV in z and thus is smaller than the NMC LCP.
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Figure 5. Time series capture of swinging pendulum simulation with 12 links

The simulation results from the two methods show good agreement. Figure 6 shows example plots of the height and
normal velocity of the last link of the 12-body pendulum fromthe two simulation methods. The vertical spikes in the
velocity plot are discontinuous jumps from collisions involving the pendulum bodies. The small trajectory differences in
the plots decrease further when the time step size is reduced.

Table 2 compares the computational complexity of the OS and the NMC/OS formulations for pendulums with the
number of links varying between 3 and 30 links. The table alsolists the LCP size for the OS, NMC/OS and the NMC
formulations. The size of the LCP remains a constant value of24 for the standard OS formulation even when the number

LCP size Computation Time (s)

Number of links OS NMC/OS NMC OS NMC/OS Speed up

3 24 39 57 13.33 47.79 3.6

6 24 54 90 10.50 68.71 6.5

12 24 84 156 19.06 305.28 16.1

15 24 99 189 21.76 558.10 25.6

24 24 144 288 38.20 1899.86 49.7

30 24 174 354 73.74 4100.51 55.6

Table 2. A comparison of the LCP size and computational time for the OS and NMC/OS formulations for the multi-link pendulum
example with different number of links. The LCP size assumes 4 contacts andnf = 4. The three LCP size columns are for the OS, the
NMC/OS and the NMC formulations. The speed up value is the ratio of the NMC/OSto the OS formulation simulation times.
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Figure 6. Comparisons of the height and normal velocity of the last link using the OS (red) and NMC/OS (blue) formulation based
simulations for a 12-body pendulum.

of links and degrees of freedom in the system is increased. Incontrast, the LCP size increases with the increase in the
number of links and degrees of freedom for the NMC/OS and the NMC formulations. We also observe that the OS
method is about 3.6 times faster for the 3 link pendulum case,and over 55 times faster for the 30 link pendulum when
compared with the the NMC/OS method. The performance gap widens substantially as the number of links in the system
is increased. The performance gap between the OS and NMC formulations will be even greater due to the even larger size
of the NMC LCP.

We have also applied the OS formulation to simulate manipulation tasks for the dual arm system in Figure 1. Video
clips showing the dual arm removal of a wheel from its hub, andthe grasping and hand off of an impact driver from
one hand to the other in simulation are included in the accompanying media clips. In each of these cases, the contact
and collision dynamics events during grasping and other interactions are simulated using the OS formulation. Unlike the
serial-chain structure of the pendulum system, the dual-arm system has a more general tree-topology.

9 Conclusions

In this article we have described a progression of formulations for the contact and collision dynamics of multi-link artic-
ulated systems with the goal of reducing computational complexity. Along the way, we have clarified the relationships
among the different approaches and those in the literature.Our strategy has been to find a formulation that best exploits
the available low-order articulated body dynamics algorithms to reduce the overall computational complexity.

The formulations studied here vary in the size of the LCP, thecomplexity of setting up the LCP, and the ancillary
dynamics steps needed to complete the dynamics solution. The generally observed trend is that the reduction in the LCP
size shifts the computational burden from solving the LCP problem, to the setting up of the LCP problem. The widely used
NMC non-minimal coordinate formulation is the simplest andcheapest to set up, but also the most expensive to solve due
to its large dimension. The RMC minimal coordinate approachon the other hand has the smallest LCP dimension, but one
that is the most expensive to set up. In the RMC approach, the size of the LCP problem in is just(nu(nf+2)+nb), which
is independent of the number of links, the number of degrees of freedom and the dimension of the bilateral constraints on
the system. In contrast, the size of the corresponding NMC LCP is larger by 6n − N. For a 6-link manipulator with 6
degrees of freedom, this amounts to difference in dimensionof 30.

The OS formulation shares the small LCP dimension property of the RMC approach, with an LCP that is larger by only
the modest dimension of the loop closure bilateral constraints,nb. We show that the OS formulation can be restructured in
a form that expresses its LCP matrix in terms of the operational space OSCM matrix for the constraint nodes. This insight
allows us to apply low-order, structure-based computational algorithms available for the OSCM to significantly reduce
the complexity of setting up the OS LCP. Consequently the OS formulation is the lowest overall complexity formulation
with a small LCP along with low complexity algorithms for setting up the LCP. Focusing on this option, we describe
extensions of the contact dynamics formulation to handle elastic and inelastic collision dynamics. The OS formulation’s
use of minimal coordinates also results in the automatic enforcement of the inter-link hinge bilateral constraints andavoids
the need for additional bilateral constraint error controlschemes. The benchmark simulations using a pendulum system
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show a widening performance improvement using the OS formulation as the number of bodies is increased. For the 30 link
pendulum system, the OS formulation is over 55 times faster than the NMC/OS approach. An area of future work is the
integration of the OS formulation with the large variety of time stepping schemes that are in development for increasing
the robustness and accuracy of contact and collision non-smooth dynamics [19].
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10 Appendix

The operational space for the multi-link system is defined bythe configuration of the set of constraint nodes on the system.
The key implementation and computational challenge for setting up the OS formulation LCP in Eq. 53 is the need for
evaluating theΛmatrix. As seen in Eq. 49,Λ involves the configuration dependent matrix products of theJacobian matrix
and the mass matrix inverse. A direct evaluation of this expression requiresO(N3) computations. However references
[10, 14, 20] have used spatial operators to develop simpler and recursive computational algorithms forΛ that are of only
O(N) complexity. We briefly describe the underlying analysis andstructure of this algorithm, and refer the reader to
[10, 14, 20] for notation and derivation details.

10.1 Spatial operator factorization of M−1

We begin with the following key spatial operator based analytical results that provide explicit, closed-form expressions
for the factorization and inversion of a tree mass matrix [10, 21]:

M = HφMφ∗H∗

M = [I+HφK]D [I+HφK]∗

[I+HφK]−1 = [I−HψK]

M−1 = [I−HψK]∗ D−1 [I−HψK]

(59)

The first expression defines the Newton-Euler operator factorization of the mass matrixM in terms of theH hinge artic-
ulation, theφ rigid body propagation and theM link spatial inertia operators. While this factorization has non-square
factors, the second expression describes an alternative factorization involving only square factors with block diagonalD
and block lower-triangular[I+HφK] matrices. This factorization involves new spatial operators that are associated with
thearticulated body (AB)forward dynamics algorithm [9, 20] for the system. The next expression describes an analytical
expression for the inverse of the[I + HφK] operator. Using this leads to the final analytical expression for the inverse
of the mass matrix. These operator expressions hold generally for tree-topology systems irrespective of the number of
bodies, the types of hinges, the specific topological structure, and even for non-rigid links [10].

10.2 TheΩ extended operational space compliance matrix

With V ∈ R6n denoting the stacked vector of link spatial velocities, itsspatial operator expression is [10]

V = φ∗H∗θ̇ (60)

Bundling together the rigid body transformations for all nodes we define theB ∈ R6n×6nc pick-offmatrix such that the
stacked vector of node spatial velocitiesVc can be expressed as

Vc = B∗V
60
= B∗φ∗H∗θ̇ ⇒ J

47
= B∗φ∗H∗ (61)

This is the spatial operator expression for theJ Jacobian matrix. Using this expression and Eq. 59 for the mass matrix
inverse within Eq. 49 leads to the following expression forΛ:

Λ
49
= JM−1J∗ 59

= B∗φ∗H∗(I−HψK)∗D−1(I−HψK)HφB (62)
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Using the spatial operator identity [10, 21]
(I−HψK)Hφ = Hψ (63)

in Eq. 62 leads to the following simpler expression forΛ:

Λ = B∗ΩB withΩ
△
= ψ∗H∗D−1Hψ ∈ R6nc×6nc (64)

We have arrived at an expression forΛ, that unlike Eq. 49, involves neither the mass matrix inverse nor the node’s Jacobian
matrix! We refer toΩ as theextended operational space compliance matrix. This terminology is based on Eq. 64 which
shows that the OSCM,Λ can be obtained by a reducing transformation of the full, allbodyΩ matrix by theB pick-off
operator involving just the matrix sub-blocks associated with the parent links of the nodes. From its definition, it is clear
thatΩ is a symmetric and positive semi-definite sinceD−1 is a symmetric positive-definite matrix.

While the explicit computation ofM−1 or J is not needed to obtainΛ, the direct evaluation of Eq. 64 still remains of
O(N3) complexity due to the need for carrying out the multiple matrix/matrix products. The next section shows that these
matrix/matrix products can be avoided by exploiting a decomposition of theΩmatrix.

10.3 Decomposition ofΩ

The following lemma describes a decomposition ofΩ into simpler component terms and an expression for its block
elements. TheE∗

ψ andψ() terms used below are defined in references [10, 20]. Furthermore,℘(k) denotes the parent link
for thekth link, andi ≺ j notation implies that thejth link is an ancestor of theith link in the tree.

Lemma 1 Decomposition ofΩ
Ω can be decomposed into the following disjoint sum:

Ω = Υ+ ψ̃∗Υ+ Υψ̃+ R where R
△
=

∑

∀i,j: i⊀⊁j
k=℘(i,j)

eiψ
∗(k, i)Y(k)ψ(k, j)e∗

j
(65)

Υ ∈ R6nc×6nc is a block-diagonal operator, referred to as the operational space compliance kernel, satisfying the
following backward Lyapunov equation:

H∗D−1H = Υ− diagOf
{
E∗
ψΥEψ

}
(66)

diagOf
{
E∗
ψΥEψ

}
represents just the block-diagonal part of the (generally non block-diagonal)E∗

ψΥEψ matrix. The

6 × 6 dimensional, symmetric, positive semi-definiteΥ(k) diagonal matrices satisfy the following parent/child recursive
relationship:

Υ(k) = ψ∗(℘(k),k)Υ(℘(k))ψ(℘(k),k) +H∗(k)D−1(k)H(k) (67)

This relationship forms the basis for the followingO(N) base-to-tips scatter recursion for computing theΥ(k) diagonal
elements: 




for all nodesk (base-to-tips scatter)

Υ(k) = ψ∗(℘(k),k)Υ(℘(k))ψ(℘(k),k) +H∗(k)D−1(k)H(k)

end loop

(68)

WhileΥ defines the block-diagonal elements ofΩ, the following recursive expressions describe its off-diagonal terms:

Ω(i, j) =





Υ(i) for i = j

Ω(i,k)ψ(k, j) for i � k ≻ j, k = ℘(j)

Ω∗(j, i) for i ≺ j

Ω(i,k)ψ(k, j) for i ⊁ j, j ⊁ i, k = ℘(i, j)

(69)

Proof: See [10, 20].

Eq. 65 shows thatΩ can be decomposed into the sum of simpler terms consisting ofthe block diagonalΥ, the upper-
triangularψ̃∗Υ, the lower triangularΥψ̃, and the sparseR matrices. Furthermore, Eq. 69 reveals that all of the block-
elements ofΩ(i, j) can be obtained from theΥ(i) elements of theΥ block-diagonal operational space compliance kernel.
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From theΛ = B∗ΩB expression, and the sparse structure ofB, it is clear that only a subset of the elements ofΩ
are needed to computeΛ. TheB pick-off operator has one column for each of the nodes, with each such column having
only a single non-zero 6× 6 matrix entry at thekth parent link slot. Only as many elements ofΩ as there are elements
in Λ are needed. Thus, justnc × nc number of 6× 6 sub-block matrices ofΩ are required. In view of the symmetry of
the matrices, we actually need justnc(nc + 1)/2 such sub-block matrices. The overall complexity of this algorithm is
linearly proportional to the number of degrees of freedom, and a quadratic function of the number of nodes. This is much
lower than theO(N3) complexity implied by Eq. 49.
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