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Abstract

In recent years, complementarity techniques have beeragp@gefor modeling non-smooth dynamics arising from con-
tact and collision problems for multi-link robotic systenTfhie commonly used complementarity approach sets up alinea
complementarity problem (LCP) using non-minimal coortisatogether with all the unilateral contact constraintd an
inter-link hinge and loop closure bilateral constraintstibe system. In this paper, we develop a complementarity for-
mulation that uses an operational space approach. It usesaticoordinates resulting in a much smaller LCP problem
whose size is independent of the number of bodies and the enaflilegrees of freedom in the system. Furthermore,
we exploit operational space low-order algorithms to oware key computational bottlenecks to obtain over an order of
magnitude speed up in the solution procedure.
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1 Introduction

For more than a decade, researchers have been developiptecoentarity based approaches for formulating and solving
the equations of motion of systems with contact and collislgnamics [1-3]. Examples of such dynamics for robotic
systems include manipulation and grasping tasks suchuagrdted in Figure 1, and legged locomotion. The complemen-
tarity approach models bodies as rigid, and uses impulsimadics to handle non-smooth collision, contact intecadi
and mode transitions. By impulsively “stepping” over nanesth events, complementarity methods avoid small tinpe ste
size and stiffening issues encountered with penalty bastiods which allow surface compliance during contact [4].
In this paper, we focus on the analytical and computatiogal a
pects of a minimal coordinate formulation of the complemen-
tarity approach to contact and collision dynamics for mlirtk
systems. This paper further extends the operational space:
lation for contact and collision dynamics described in refee

[5]. We adopt the complementarity based physics models from
[2, 3].

The complementarity based solution consists of a combina-
tion of: (a) setting up dinear complementarity problem (LCP)
problem; (b) numerically solving the LCP problem; and (c) an
cillary dynamics computations. The LCP depends on the link
mass and inertia properties, contact friction parameiatsy-
link bilateral constraints and contact and collision uteital con-
straints. The LCP solution identifies the unilateral ccaists
that are active, and solves for the impulsive forces andcitglo
changes that are consistent with the constraints on therayst
Variants of the complementarity approach to handle elastit
inelastic collisions have also been developed [3]. While f@P Figure 1. An example multi-arm robot manipulation task
mulations use discretized approximations for the frictomes, involving unmounting a wheel from a hub involving several
other researchers have explored non-linear cone comptamegontact and collision dynamics interaction events.
ity approaches that avoid such approximations [6].

The typical approach to handling contact and collision dayiga is to work with non-minimal coordinates, since it
is the easiest to set up [3]. In this formulation, the LCP stdges most of the work, but the LCP dimension is large
and computationally expensive to solve. For a multi-linktsyn withn links, the standard LCP approach usesrton-
minimal coordinates together with the bilateral constaassociated with the inter-link hinges and the unilatevatact
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constraints. This approach has a mass matrix that is bladodial and constant. Besides the large LCP problem size,
this formulation requires additional techniques for manggerror drift in the bilateral constraints when integnatithe
equations of motion.

An alternative approach is to use minimal hinge coordingtes automatically eliminate the bilateral constraints
for the inter-link hinges [7]. While the underlying physieamains unchanged, this formulation reduces the size of the
LCP problem, and avoids the need for managing bilateraltcaing violation errors for the hinges. However, the use of
minimal coordinates leads to a dense and configuration digmémass matrix. Thus while minimal coordinates lead to
smaller LCP problems, they also typically significantlyrie&se the difficulty and computational complexity of settip
the LCP problem. This has been a significant hurdle in the fisgromal coordinate approaches.

In this paper we explore a progression of minimal coordifiateulations that partition the overall solution effort
in different ways between setting up the LCP problem, andisglit. Our goal is to reduce the overall computational
complexity by taking advantage of the smaller dimension iofirmal coordinate models together with the host of struetur
based, recursive and low-order dynamics algorithms tleteailable for articulated system dynamics. Notable exam-
ples of such structure based algorithms include the congdgid body algorithms for computing the mass matrix [8],
the articulated body inertia forward dynamics algorithrhd@d the spatial operator based operational space dynamics
algorithm [10].

The main contribution of this paper is in the developmentrobperational space bas&s formulation that while
using minimal coordinates for the contact and collisionatyits problem, uses low-order spatial operator algorittims
overcome the complexitys of setting up the LCP problem. Tégsilts in a more than an order of magnitude reduction in
computational complexity. The size of the resulting LCPgte is independent of the number of links and generalized
coordinates, and only depends on the number of contact nddealso describe extensions of the formulation to handle
elastic and inelastic collision dynamics. The differenfalations are developed and described in a way so as tdyclari
the relationships among them and methods available intdrature.

We use a multi-link pendulum numerical problem to quarntiedy and parameterically measure the performance
improvements from the new OS formulation. We have also edphe OS formulation to simulate manipulations tasks
involving contact and collision interactions for a duatrerobot system. This dual-arm robot is used as a referentenys
to compare the LCP sizes for the different formulationsalsed in this article.

The organization of this paper is as follows. Section 2 dessrthe complementarity conditions associated with
modeling a single unilateral contact constraint. In Sec8ave describe the system-level, multiple contattsC LCP
formulation based on non-minimal coordinates that is widesled. While easy to set up, this formulation leads to a large
LCP problem. Section 4 discusses a simN&E formulation based on the use of minimal coordinates. We robshat
the reduction in the size of the LCP is accompanied by an @aserén the complexity of setting up the LCP. Section 5
further transforms the MC LCP formulation to develop RBIC formulation that further reduces the size of the LCP
problem, but at the cost of an increase in the LCP setup coityl&ection 6 develops th@Sformulation that is based
on an operational space approach. While the LCP size is metietarger than from the RMC approach, it opens the
path to exploiting low-order operational space algorititmsignificantly reduce the LCP setup complexity. Section 7
extends the OS formulation contact dynamics model to irekldstic and inelastic collision dynamics. Section 8 fesus
on computational issues, and describes operational spaeputational algorithms to reduce the complexity of sgttin
up the OS LCP problem. The section also includes results &lammerical simulation to quantify the performance
improvements for the OS formulation.

2 Unilateral contact constraints

Unilateral constraints are defined by inequality relatiops of the form
2(0,t) >0 1)

for some functioro of the configuration coordinateés and timet. As an example, the non-penetration condition for
rigid bodies can be stated as an inequality relationshipireg that the distance between the surfaces of rigid ksoblée
non-negatived (0, t) is generally referred to as tliistanceor gapfunction.

Contact occurs at the constraint boundary, i.e., whght) = 0. For bodies in contact, the surface normals at
the contact point are parallel. The existence of contacgpgally determined using geometric or collision detegtio
techniques. For a pair of bodidsandB in contact, we use a convention where th contact normafi(i) is defined
as pointing from bod\B towards bodyA, so that motion ofA in the direction of the normal leads to a separation of the
bodies. A unilateral constraint is said to be inativestate when

2(0,t) =0(0,t) =09(0,t) =0 (2)
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Thus, a unilateral constraint is active when there is cantawd the contact persists. Only active constraints gémera
constraint forces on the system. A constraint that is naveds said to beanactive Contactseparationoccurs when
the relative linear velocity of the contact points along tieemal becomes positive and the contact points drift agart.
separating constraint is in the process of losing contatttti@msitioning to an inactive state. At the start of a sejiama
event, we have

9(0,t) =0(0,t)=0 and ?(6,t) >0 (3)

2.1 Contact impulsefor an active contact constraint

We now describe contact force modeling using the approacéf@mences [2, 3]. The polyhedral direction
6-dimensional spatial impulse at tf#é* active contact constraint node has a zero an#PProximation  yectors
gular moment component. Its non-zero linear impulse corapti, (i) € R2 can be T
decomposed into normal and tangential (friction impulgehponents

Fu(i) = Fn(DR() + Fe (D)) 4)

wheret(i) denotes a tangent plane vector for the contact pair. Assuming that th f\
friction coefficient isu(i), the magnitude of the tangential Coulomb frictional imjgul
is bounded by the magnitude of the normal component as fellow .

[Fe@ < nB)Fn(i) (5)

When the bodies have non-zero relative linear velocitieeeatbntact point, the con-

tact is said to be aliding contact. Otherwise, when the relative linear velocity ize Figure2. Polyhedral approximation
the contact is said to beralling contact. During sliding, the tangential frictional im®f the friction cone.

pulse is in a direction opposing the linear velocity vectehich necessarily lies in the

contact tangent plane) and Eq. 5 holds with an equality. ;Tthestangential friction impulse is on the boundary of the
cone defined by Eq. 5 when sliding, and in the interior of theecarhen rolling.

For the purpose of numerical computation, the friction cairtbei'™ contact is approximated by a friction polyhedron
consisting of a finite numbern¢, of unit direction vectorsii (1) in the tangent plane (see Figure 2.1). It is assumed that
for each direction vector, its opposite direction vectoalso in the set. For notational simplicity, we assume thats
the same across all contact points. THecontact tangential frictional impulse is expressed asittgat combination of
these direction vectors as follows:

ne

Fei) =) Bj(i)dj(1) = DA)B(D) (6)
j=1
where
D) 2 [dyfi), - ,dw, (0] € R¥™ and (i) = col{p;(D)}], € R™

Combining Eg. 4 and Eq. 6 we have

1>

Fu(i) =D(i)B(1), where B(i)

Fn(i)
(i)

]ERT”“ and D(i) £ [A(i), D()] e RZ(™Y  (7)

During sliding, thep; (i) component is non-zero and equakifi)F,, (i) for just the single directiofithat corresponds to
the closest direction opposing the (tangential) relativedr velocity. In other words, withi(i) denoting the magnitude
of the contact relative linear velocity,

it o(i) ®

In the abovel . .,nq-) denotes the indicator function whose value is 1 if the caowliis true, and 0 otherwise.

B (i) = { g(i)Fnumk:ﬂ if Zmig

2.2 Complementarity relationship for a unilateral contact

We begin by defining complementarity conditions. Két) € R™ denote a function of a vectar € R™, whosez;
elements have lower and upper bouhdandu; respectively. Theomplementarity conditigrf(z) L z, is said to hold
when the following properties apply:
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e fi(z) > 0whenz; =1;
° fi(Z) < 0whenz; =y
e fi(z) =0whenl; < z; <uy

Typically the bounds arg = 0 andu; = oo, and we will assume this to be the case unless otherwisealstate these
bounds, the elements 6fz) andz are non-negative, and the complementarity condition reguhat for any, only one
of f; or z; can be positive. A complementarity condition ifirear complementarity conditiowhenf(z) has the form
Mz+q L zfor some matrix)t and vectorq. Thus for an LCP

Mz+q L z 9

We have amixed complementarity conditiomhen one or more of the rows dfz) are exactly equal to zero, i.e. the
bounds for one or more of the rows dre= —co andu; = co. Such identically zero rows represent equality conditions
while the remainder are complementarity (inequality) dbods.

The sliding/rolling contact relationships described aboan be rephrased as the following complementarity condi-
tions':

A*(i)vi(i) L Fn(i) (separation) (10a)
oc({)E() + D*(i)vi (1) L (i)  (friction force direction) (10b)
wi)Fn (1) —E*(1)B(1) L of(i) (friction force magnitude) (10c)

where
E(D) 2 col{l); € R™ 11)

andvy (1) € R denotes the relative linear velocity of the first boilith respect to the second boBy The component
of this relative linear velocity along the contact normalfis (i)vii (i). A positive value implies increasing separation
between the bodies, while a negative value indicates tleabdidies are approaching each other. Eq. 10a states that this
velocity component and the normal interaction imptHgéi) cannot both be simultaneously positive. Thus the intesacti
impulse must be zero when the bodies are separating, anchthesie can be non-zero only if we have sustained contact.
Eqg. 10b implies that the tangential friction impulse oppatbe tangential relative linear velocity, while Eq. 10desahat
the magnitude of the tangential impulse is on the frictionecboundary when the the tangential relative linear vefasit
non-zero.

The complementarity conditions in Eqg. 10 enforce the naripnetration constraint at the velocity instead of at the
gap level. Hence they are valid only when the gap is zerg, wken contact exists [3]. Using Eq. 7, Eq. 10 can be
expressed more compactly as

o e .
E(i)o(i) +D (_I)IVH(T) 1 ﬁ(.l) (12)
EWBGH) L o)
where
ti) 2 [E?i)] eRM and E[{) 2 [u{i), —E*(i)] € RW(MetD) (13)

With n,, denoting the number of unilateral contact nodes, the coendevel complementarity conditions in Eq. 12 can
be aggregated across all the contact constraints and erprasthe system level as:

Eo+DV, L B and EB L o (14)

where
2 col{o(i)), € R™

(=)
Il

q
Il

= col {p(i)}, € R,

D 2 diag(D(i)}™, € R¥ (et 2 diag{E(i)} 1, € RMu et Dxm (15)
and E £ diag{E(i)}]" € RM ™l yb 2 col {vE (i)}, € R3M
Also, Eq. 7 can be restated at the system level as
F.=DB where F, = col{F, (i)}, € R (16)

1For a vector/matrixA, the A* notation denotes its vector/matrix transpose.
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3 Non-minimal coordinates (NMC) L CP for mulation

In this section we derive the commonly used non-minimal dv@te LCP formulation for
contact dynamics based on the approach in [3]. We refer softiimulation as th@on-
minimal coordinates (NMClpormulation.

Contact and collision dynamics models build upon smoothadyins models. The
smooth dynamics model used by the NMC method treats all ties lin the system as
independent bodies, and all coupling hinges as explicitdibl constraints as illustrated
in Figure 3. Such a smooth dynamics model utilizes non-maicoordinates and is also _
referred to as &lly augmented (FAnodel [11]. bilateral

. . constraint:

Let n denote the number of links in the system, afithe number of system degrees of é
freedom in the absence of bilateral constraints. For the B8etiN = 6n. Letn, denote
the dimension of the bilateral constraints arising froneifiink hinges and loop closure
constraints on the system. Withdenoting the vector of positional and attitude coordinatE
for the links, letV € RS denote the stacked vector of spatial velocities of all thidli
Then there exists &, (x,t) € R™ > matrix and atl(t) € R™v vector that define the
following velocity domain constraint equation for the bdeal constraints on the system:

%ure 3. Fully augmented
model with hinges modeled as
constraints.

Go(x, 1)V = U(t) (17)

We assume thaEy (x, t) is afull-rank matrix. Observe that Eq. 17 is linear Th The bilateral constraints effectively
reduce the independent degrees of freedom for the systemrto (N — ny,). The bilateral constraints are accounted
for via Lagrange multipliersA € R™v to yield the following smooth equations of motion for theteys

Mo — Gy (x, t)A = C(x, V)

Go(x, 1)V = U(t) (18)

wherea € R®" denotes the spatial acceleration of the bodMis< R®™*6" is a block diagonal matrix with the & 6
spatial inertias of each of the links along the diagon@l.c R®" is a vector of the velocity dependent Coriolis and
external forces on the system. Th&7 (x, t)A term in the first equation represents the constraint forces the bilateral
constraints. Differentiating the Eq. 17 constraint equatEq. 18 can be rearranged into the following descriptonfo

M —Gg af _|C where §f 2 {(— G,V e R™ (19)
Gy 0 A U

An attractive feature of these smooth equations of motidhastheM matrix is block diagonal and constant. Using the
following discrete time Euler step approximation ovekatime interval?

V' -V =aA, and pp 2 AA € R™ (20)

the differential form of the equations of motion in Eq. 19 ¢@ntransformed into the following discretized version that
maps thepy, impulse stacked vector at the bilateral constraint nodestire resulting change in body spatial velocities.

M -G
G, O

3.1 Including contact impulses

vt —v-
Po

CA¢

A, (21)

The stacked vector of relative linear velocities acrosstirgact nodes is denoteg € R« It is related to the stacked
vector of body spatial velociti€g via the following relationship

Vu = Guv (22)

where theG,, € R®«*5" matrix contains one block-row per contact node-pair, witlsterow mapping the spatial
velocities for a node pair into the relative linear velodiyross the contact. The,, matrix also relates th&, equal

2The — and+ superscripts denote the respective value of a quantitppfere and after the application of an impulse.
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and opposite impulses at the contact node-pairs to thespneling spatial impulses on the bodipg, € R°" via the
following dual mapping

Pu = G‘TLFU (23)
The p,, contact impulses can be included in the Eq. 21 smooth eqsatibmotion by adding,, to the CA, term to
obtain
M  —G; vt -y A u
Gp 0 Pov UA

3.2 Assembling the system LCP

We now set up an LCP to help solve the equations of motion amdhiln unknown constraint forces. From Eq. 16 and
Eqg. 23 we have
Fu=DB = p.=G;Dp (25)

Thus Eq. 24 can be recast as

CA,
_ ¢ 26
G, O 0 Po A, (26)

p

AR
( M -G —G;D)

Combining this with the complementarity conditions in E4.l&ads to the following NMC formulation of the LCP in
Eq. 9:

M  —Gi|-GiD 0 s
G 0 0 0
m 2 o b LA 27)
D*Gy, 0 0 E B
0 0 E 0 o

This is a mixed LCP problem, where the first two rows are etabnditions, while the lower two rows are comple-
mentarity conditions. This NMC LCP formulation is esselhfithe one described in [3]. It makes use of non-minimal
coordinates for the articulated system and is of §&e+ ny, + n, (n¢ + 2)). The constant and block-diagonal structure
of M results in?t having a simple and highly sparse structure. The compl@figssembling)t and q for the LCP is
justO(n). Reference [3] derives sufficient conditions for the existeof a solution for the LCP problem.

The solution of the Eqg. 27 LCP provides néWw velocity coordinates which can be numerically integrategrop-
agate thec configuration coordinates. The solution valueg3dhdicate which contacts are active or inactive, while the
values ofc define the rolling or sliding state of each of the active cotsta Thus an LCP solution with, (i) positive
indicates that thét" contact isactive Furthermoreg(i) = 0 implies that theit™ contact is aolling contactwhile a
positive value implies that it is sliding contact.

In the NMC formulation, the LCP does virtually all the workydathe complexity of setting up the LCP is relative low.
The main disadvantage of this formulation is the large sfzab@LCP and the consequent large complexity of solving it.
Moreover, the use of non-minimal coordinates requires theldit@nal use of constraint
error stabilization schemes to avoid the build up of comstngolation errors for
the bilateral constraints.

We will use the dual-arm robot in Figure 1 to track and comphec CP size
for this formulation and the ones to follow. This dual-arnatdrm has a 4 link
sensor head, a pair of 7 link arms, with each arm having a 3rfihnged for an
overall system with 26 links and 26 degrees of freedom. Itri@$oop closure e
bilateral constraints. Thus = 26, N = 6n = 156, andn, = 5n = 130. For constraint
this exercise we assume that = 4, and that there are 4 contact constraints. With
these parameters, the size of the NMC LCP is 310 for the dualsggstem. The
statistics for the NMC scheme are also summarized in theciisimn of Table 1
in Section 6.

Figure 4. Tree augmented model with
o ' . only loop closures modeled as bilateral
4 Minimal coordinate (MC) LCP formulation constraints.

In contrast with the NMC formulation, in theinimal coordinates (MCjormu-
lation, inter-link hinges are not modeled as bilateral ¢@ists. Instead, minimal
hinge coordinates are used to parameterize the permissitge motion. In doing
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so, the number of coordinates associated with the hingehmht&number of degrees of freedom for the hinge. This
approach is used for all the hinges in a spanning tree forybems graph, and bilateral constraints are used only for
additional loop closures that may be present in the systpoldgy as illustrated in Figure 4.

Except for the switch from non-minimal to minimal coordiest the development of the MC formulation largely
parallels that for the NMC formulation. Hence wherever jjass we reuse the earlier notation, with the understanding
that the meaning of the symbols depends on the formulatiotegt Thus once again, we udéto denote the number
of degrees of freedom for the tree sub-system. Witk RN denoting the vector of hinge coordinates, the minimal
coordinates equations of motion for the smooth dynamicasifthe tree-topology sub-system can be expressed as

M(8)0+C(8,0) =T (28)

where the configuration dependent matX0) € RN is themass matriof the systemg(8, é) e R™N denotes the
velocity dependent Coriolis and gyroscopic forces ve@ndJ € RN denotes the applied generalized forces. The mass
matrix is symmetric and positive-definite for tree-topolaystems. The configuration dependency and dense structure
of M makes it clearly more complex than the sparse structure anstant value of théVl mass matrix in the NMC
formulation. On the other hand, for the dual-arm robot systeFigure 1M is a compact 26-dimensional square matrix
compared with the 156-dimensional square matfix

Let n, denote the dimension of the bilateral constraints on theesysrising from the loop closures in the system.
Sinceny, applies only to loop bilateral constraints, it is much serathann,, in the MC formulation. There exists a
Gp(8,1) € R™ N matrix and &l(t) € R™ vector that defines the velocity domain constraint equaii®follows:

Gu(0,1)0 = U(t) (29)

Once again we assume th@g (0, t) is afull-rank matrix.
The smooth dynamics of closed-chain systems can be obthinatbdifying the tree system dynamics in Eq. 28 to
include the effect of the bilateral constraints iiagrange multipliersA € R, as follows

M(6)6 + C(6,0) — G5 (0, )A =T

(30)
Gp(0,1)0 = (t)

By differentiating the bilateral constraint equation EQ, and including in the average force from thg € R”N contact
impulse, Eq. 30 can be rearranged into the following desariorm:

M -G ) |6 T-¢ A — A . -
b = T Pu/Ae where { 2 U(t) — Gpd € R™e (31)
Gp O A U
Using the discrete Euler step approximation ) ) )
07 — 0~ =04, (32)
the discretized version of Eq. 31 takes the form
M —Gp ) |6t -6 T —C)A¢ +pu .
Gb = ( G_) e P with Po é }\At (33)
Gy 0 Pov UAL
With G, € R®«*N such that _
Vu = Gue (34)
the dual expression for the contact spatial impulses isdiye
* 16 ~x
pu=G.F. = G.Dp (35)

Combining the complementarity conditions in Eq. 14 with Bg.leads to the MC formulation version of the Eq. 9 LCP
with

M —Gi|-G:D 0 o+ {—Mé—(:r—emﬂ
G 0 0o o0 —Gp0— —UA
m 2| 2 ~|, 22 {2 42 2 : (36)
DG, O 0o E B 0
0 0 E © o 0
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This is a mixed LCP with the top two rows correspond to equalinditions while the lower two are complementarity
conditions. Its structure is very similar to the NMC formtida LCP in Eq. 27 and differs primarily in the use of minimal
coordinates. The size of the MC LCP(Y + ny, + ny (ns + 2)). Unlike the NMC formulation, this dimension does not
depend on the number of links SinceN is much smaller when using minimal coordinates, the MC LG & much
smaller than the NMC LCP size. For the dual arm robot in Figyréne dimension of the MC LCP is just 50 compared
with 310 for the NCP formulation.

On the other hand, evaluatifg for the MC LCP requires the configuration dependent and d&tseatrix. While
the composite rigid body inertia algorithm provides an @ffit way to computéVl [8], the computational complexity
scales a®(N?). Thus the decrease in the LCP size and solution complexitthéeoMC formulation are accompanied by
an increase in the complexity of setting up the LCP. The costpiexity for the MC formulation is also summarized in
Table 1. The solution of the MC LCP yields the néw generalized velocity value which can be integrated to pyapa
the © configuration coordinates. As in the case of the NMC formaigtthe bulk of the computational effort in the MC
formulation is in setting up and solving the LCP problem.

5 Reduced minimal coordinate (RMC) L CP formulation

Continuing with the minimal coordinate approach, we novetakther steps to reduce the size of the LCP problem. The
matrix on the left of Eq. 31 can be inverted to yield the foliogvsolution foro:

A

0f = M LT—C+pu/Ad (37a)
A= [GeMIG] T (—Guby + 1) (37b)

0 = B +MGHA
L [1-M6; [GoMIGh] Gy By + MG [GoM TGy T u (37¢)

Using Eq. 32, we obtain

T R
07 = 0 +0A,

L R [1 — MG} [GeMiGy] ! Gb] ABs + MGy [GoM 1G] T AW (38)
o Yp. +X
where
Y 2 MM IGE(GyM 1G] LGyM L e RN 39
and X 2 6 +Y(T—C)A +M G} [GoM 1G;] TUA € RN
Thus '
D*vi ¥ D*G.6" *D*G,YG,DB +D*G,X (40)

Using this allows us to eliminate™ andpy from the MC LCP formulation in Eq. 36 to obtain the followifeduced
Minimal Coordinate (RMCjormulation LCP:

fmé (DGuIGuD E>, Zé [ﬁ], qé

E 0 o (41)

D*G.X
0

Since there are no equality conditions, this is a standdingréhan a mixed LCP. The size of this RMC LCRuig(n¢+2).
Itis notable that the size of the LCP does not depend on théauai linksn, the number of degrees of freeddimnor the
ny, dimension of the bilateral constraints. It only dependshenntumber of contact constraint nodes. Thus the dimension
of this LCP is even smaller than that for the MC formulatioor the dual arm robot system, the dimension of the LCP is
24. On the other hand, computifg for the RMC LCP requires th¥& matrix in Eq. 39, which requires the configuration
dependenM ! matrix and several expensive matrix/matrix products. Ehasmputations are @ (N3) computational
complexity. Once again, while the RMC formulation has sssbtdly reduced the LCP size and consequently its solution
complexity, this reduction has been accompanied by a sigmifincrease in the complexity of setting up the LCP problem
The cost complexity for the RMC formulation is summarizedable 1.

In contrast with the NMC and MC formulations, the solutiortleé RMC LCP does not by itself yield the new system
velocity or state. Instead the following sequence of stepeeded to obtain the new state values:
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1. Assemble and solve the RMC LCP in Eq. 41 to obfaiando. Usef in Eq. 35 to obtain the,, contact impulse
vector.

2. Usep,, in Eq. 38 to compute the new" system velocity. This can be integrated to obtain the netweaysonfigu-
ration coordinates.

Thus, the RMC LCP by itself does not do all the work, and thetamial step (2) is needed to complete the computation
of the newd ™+ system velocity coordinates.

The formulation developed by Trinkle [2] is a hybrid comHina of the NMC and RMC formulations. Trinkle’s setup
allows the use of general coordinates for describing theosimequations of motion. However, instead of eliminating th
hinge bilateral constraints by using minimal hinge cooatis a pair of symmetric (positive and negative) complemen-
tarity conditions are added to enforce the equality coadifor each hinge constraint. This inflates the size of the LCP
much like the NMC approach. However, Trinkle;s approaclinslar to the RMC in eliminating the velocity coordinates
and the loop closure bilateral constraint Lagrange migtiplfrom the LCP problem to obtain an LCP similar in form to
Eq. 41.

6 Operational space (OS) L CP formulation

So far we have found that the reductions in LCP size have readitie-effect of increasing the LCP setup complexity. In
this section we look into reducing such setup complexitpgisow-order articulated system dynamics algorithms. From
Eqg. 31 we have

0 2 G-y
2 GeM T —C+GiA+pu/Ad — U @)
= GoM IGIA+GoM Ypu /A +af, where af 2 GeM LYT—C) -4
= GoM 'GiA+ GueM 'GLDB/A¢ + of,

The above expression characterizes the equality conditiotihhe dynamics from the bilateral constraints. The retativ
linear acceleration of the contact nodes is obtained bedifftiating Eq. 34 to obtain

V= Gub+Gu0 2 GM LT —C+ GiA+pu/Ad + Gub (43)

The discretized approximatigw;; — v;;) = v, A of this equation leads to

vi BB G MIGIAA + G M IGID B + vy + af A, where of, £ G M YT —€)+ G0 (44)

Combining the complementarity conditions in Eqg. 14 with B8.and Eq. 44 yields the following mixed LCP for the
system:

GuM G,  GyM !GiD |0 Po [ oA ]
M2 | D'GMIG, D'GMIGD|E |, z2 [B], q2 |Dvy+alAy (45)
0 E 0 o 0

This 9t matrix still requires the configuration dependaiit* matrix whose evaluation if o (N®) computational com-
plexity. We next look more closely at the structure of thg andGy matrices.

The unilateral and bilateral constraints are associatéld modes on the bodies. Let us denote the number of this
overall set of nodes involved in the unilateral and bildteoastraints as... Denoting the spatial velocities of these nodes
by the stacked vectd?. € R¢, there exist matrice,, € R¥«*6"c andQ, € R™v*®"e sych that the unilateral and
bilateral velocity constraint equations can be expresséd a

v =9, V. and QyV.=4u (46)
LetJ € R *N denote the Jacobian for the constraint nodes, so that
V. = g0 (47)

30, has the same structure as g constraint mapping matrix for bilateral constraints for thdegree of freedom spherical hinges.
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It follows from Eq. 29, Eq. 34, EqQ. 46 and Eq. 47 tligt andGy have the following form:
Gu - ng and Gb - ng (48)

With
A A IM1g* ¢ ROMe xbne (49)
we can use Eq. 48 to re-expreBsin Eq. 45 as

QpAQ3, QAQD 0 ?b A 195, QD] 0
M= | D*QAQ; D'QAQ;D E | =] |DQ, £ =
0 E 0 0 E ‘ 0

The A = JM~1J* matrix definition in Eq. 49 is precisely the mathematicalregsion for the inverse of theperational
space inertiamatrix that is used in the operational space approach fastnstanipulation and control [12, 13]. Based
on this structural similarity, we borrow and extend the agienal space terminology to our current context with the
constraint nodes forming the operational space nodes., Alswowing terminology, we refer td. as theoperational
space compliance matrix (OSCMiatrix. The invertibility of A does not depend dghbeing invertible — only thaf have
full row-rank. When it exists, the inverse gfis referred to as theperational space inertialThe properties of the OSCM
are discussed in detail in [10].

The property of the\ matrix that is of importance for us is the availability of atghms of O(N) + O(n?) computa-
tional complexity for evaluating\ [10, 14]. The low-order of these algorithms is remarkablegithe presence 6ff—1
in the expression fon, since evaluating and M~ individually requireO(N?) and O (N®) computations respectively.
This algorithm reduces the complexity of evaluatiigin Eq. 50 fromO(N?) to the much smalle®(N) + O(n?2) com-
putational complexity. The low complexity algorithm foraumating/A is based on an analytical transformation of Eq. 49,
followed by a disjoint decomposition of the matrix into bkodiagonal, and upper and lower triangular components that
can be computed recursively. A summary of this structuefaanalysis and accompanying algorithms using spatial
operator techniques is described in the appendix. An @teesparsity based technique for evaluatig described in
reference [15].

With 8, 2 M 1(T—@),

¢ 4248 7 3L47

oy, ngef— Qb(38f+39) +Qb\7 —L[ Qboc +va —ﬂ (51)
of 20,36+ Gy E 0, (36¢ +30) + QuVe = Qua’ + 0,V
where o
of =30+ 70 (52)

Physically, o is the stacked vector of spatial accelerations of the caimstnodes in the absence of the bilateral and
contact constraints.

Using Eq. 50 and Eq. 51, the Eq. 45 LCP can be re-expressee #allbwing Operational Space (OSdrmulation
LCP:

Qp 0 Po Qy, Qb —il
A[Q:, 05D | - A+ | 0 AV A+
m 2 | D, Al E].z2 0| a2 | o™ T Do T T Dy
0 E 0 o 0
(53)

This is a mixed LCP, with the first row corresponding to an diguaondition while the bottom two rows correspond to
complementarity conditions. The size of this LCRis, + ny(ns + 2)). Like the RMC formulation, the size of this
LCP does not depend on the number of linker the number of degrees of freeddxj but it does depend on the,
dimension of the loop closure bilateral constraints. Theatision of the OS LCP is moderately larger than the RMC
LCP but smaller than the MC LCP. Typ|caII§2u, Q, andsl are all zero leading to a simplgrin Eq. 53. For the dual arm
robot system, the dimension of the OS LCP is 24.

Computing)t for the OS LCP requires the configuration dependematrix Eq. 53 whose evaluation is 6f(N) +
0O(n2) computational complexity which is much smaller than ®EN3) complexity for evaluating® for the RMC
method. Thus in comparison with the RMC formulation, white 10S formulation increases the size of the LCP by a
modestny,, it drastically reduces the LCP setup complexity. The ttdsw significant reduction in the overall complexity
of the contact dynamics computations for the OS formulation
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Like the RMC formulations, the solution of the LCP does noitbglf yield the new system velocity or state. Instead
the following sequence of steps is needed to obtain the ree galues:

1. Assemble and solve the OS LCP in Eq. 53 to obfajn3 ando. Usep in Eq. 35 to obtain the,, contact impulse
vector.

2. Usepy, andp,, in EQ. 33 to obtain the newt system velocity using th® (N) articulated body forward dynamics
algorithm. This can be integrated to obtain the new systemfiguration coordinate8.

Like the RMC formulation, the LCP by itself does not do all terk in the OS formulation, but instead the additional
step (2) is needed to complete the computation of the@ewystem velocity coordinates.

L CP Formulation
Property NMC \ MC \ RMC \ 0s
Coordinatestype Non-minimal Minimal Minimal Minimal
L CP assembly complexity o(n) O(N?) O(N®) O(N) +0(n?)
LCP dimension 6n+npy +ny(ng+2) | N+np +ny(ng +2) ny(ns + 2) ny + ny(ng + 2)
Dual-arm LCP dimension 310 50 24 24
Ancillary dynamics steps None None Evaluatep,, ando* Evaluatep,, ando*

Table 1. A comparison of the features of the different NMC, MC, RMC and OS fotim$afor contact and collision dynamics.
The LCP dimension size is for the reference dual-arm robot problem, wWiel€ CP assembly complexity highlights just the major
contributors.

The LCP formulation developed by Yamane and Nakamura [7}emalke of thelivide and conquer algorithm (DCA)
[16] techniques and is a special case of the OS formulatidve @S formulation here is however more general since it
handles loop closure bilateral constraints, exploits af@nal space techniques to reduce computational corplamd
as described later, handles collision dynamics.

Table 1 summarizes the dimensions and computational caxhpfer all the formulations discussed so far. The trend
across the NMC, MC and RMC formulations is that the reductiothe size of the LCP shifts costs to the LCP setup
process. While the initial form of the OS formulation LCP in.B& also follows this trend, the restructured Eq. 53 LCP
breaks the pattern by restructuring the LCP to take advant@dow-order, structure-based algorithms for articudate
system dynamics.

7 Collision dynamics

In this section we develop extensions to the OS LCP fornadafior handling the dynamics of collision events. During
inelastic collisions some of the impact energy is lost. €befficient of restitutione (i) defines the fraction that remains
after a collision. The complementarity approach to modgtiollisions breaks up the collision event into a pair of amst
taneousompressiormanddecompressiophases [3]. During the compression phase, the collisiouisepis stored, and
during decompression, a fraction of the collision impuksedcovered. We will make use of time discretized equations
with impulses developed for contact dynamics, but with= 0 since collision events are instantaneous.

7.1 Compression

Attheit™ contact undergoing collision, the compression phase iantaneous and impulsively changes the relative linear
contact velocity fromv;, (i) to a newv (i) value with a non-negative normal component. The compresgipulse is
denotedb.(1). The mixed LCP problem for the compression phase is obtdigettingA; = 0 in Eq. 53 to obtain

—4
D*vy
0

w=Mz+q L z with q 2 (54)
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The LCP solution is used to instantaneously (i.e. impulg)yeropagate the state for the compression phase as follows

Pe = 2D B+ Qpy
0 =0~ + M g*p. (55)

vi =gec

7.2 Decompression

The decompression phase applies an additional impulse ghitoaec(i)[0, A*(i)p.(i)] for theit™ contact along the
normal from the impulse stored during the compression phEse recovered decompression impulse is

9 £ col{(e(V)[0, A" (Ipe (L) AN, € R (56)

The decompression LCP is obtained by updating Eq. 42 andEtp ihclude the additiondt impulse. This leads to a
decompression LCP problem that is the mixed LCP in Eq. 53 Wijtk= 0, the contact linear velocity,, replaced with

Qp

v}, and an additiona D*Q AQ* 9 term for the recovered impulse included in & CP vector term. The resulting

w

decompression phase LCP is

sl
D¢

Qy,
D*Q,
0

+ AQ%D

w=MMz+q L z wth q =2 (57)

The LCP solution for the decompression impulse can incladitianal contact impulse terms that ensure that the normal
component of the relative linear velocity at the end of theoslepression step remains non-negative. The LCP solution is
used to instantaneously propagate the state for the deessipn phase as follows:

p=0:D B+ OpA+ QLD

. . 58
e+ =0° + Mflg*p ( )
Whene(i) = 0, the collision is completely inelastic, and there is noatepression phase. However, in general, each
collision event requires the solution of two LCP’s in thigpapach.

8 Simulation results

We use a simulation of a multi-link pendulum colliding witself and the environment to quantitatively evaluate the pe
formance of the OS formulation. This example also allowsouysarameterically measure the performance improvement
as a function of the problem dimension by varying the numibdéinks in the pendulum. The environment consists of a
floor and a wall located 4m away. The multi-link pendulum dstssofn identical 1kg mass spherical bodies connected
with pin hinges. The radius of the sphere is scaled basedeonuinber of links to maintain a 12m overall length of the
pendulum. The pendulum base is located at a height of 10m.opée source Bullet software [17] is used for collision
detection, and the PATH software [18] for solving mixed cdenpentarity problems. The simulation uses a time step of
0.1ms, with a 0.5 coefficient of friction and a 0.7 coefficiehtestitution to simulate inelastic collisions. The pehoh
starts at an angle of/4 radians with an initial angular velocity of 1 radian/s angravitational acceleration of 9.8m/s

As the pendulum swings from left to right, it collides withetlground, bounces off of the ground, and eventually
collides with the wall on the right. In the course of the satpees multiple links are at times in collision with the ground
the wall and with each other. Figure 5 contains a sequenca@és shots from such a simulation for a 12-link pendulum.
A video of the simulation is included in the media clips acpamying this article. We have simulated this contact and
collision dynamics scenario using two different technigughe first technique is the minimal coordinate OS formatati
described in Section 6.

The second technique, that we refer to asNiMC/OS formulationis a non-minimal coordinate variant of the OS
formulation. Similar to the NMC method, each link is treagsdan independent body, and the hinges are handled as
bilateral constraints between the neighboring links with= 6n — N. The NMC/OS LCP has the same form as the OS
LCP in Eq. 53, except that the OSCM is the non-minimal coawih, = JM~1J*, instead of Eq. 49. The NMC/O&
is a much larger matrix but with a simple block diagonal sute. This NMC/OS LCP does not include system velocity
coordinates’ in z and thus is smaller than the NMC LCP.
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Figure5. Time series capture of swinging pendulum simulation with 12 links

The simulation results from the two methods show good ageeénirigure 6 shows example plots of the height and
normal velocity of the last link of the 12-body pendulum frdhe two simulation methods. The vertical spikes in the
velocity plot are discontinuous jumps from collisions itwing the pendulum bodies. The small trajectory differenice
the plots decrease further when the time step size is reduced

Table 2 compares the computational complexity of the OS had\tMC/OS formulations for pendulums with the
number of links varying between 3 and 30 links. The table &fte the LCP size for the OS, NMC/OS and the NMC
formulations. The size of the LCP remains a constant vali@dér the standard OS formulation even when the number

LCPsize Computation Time (s)
Number of links || OS | NMC/OS | NMC (O] NMC/OS Speed up
3 24 39 57 13.33 47.79 3.6
6 24 54 90 10.50 68.71 6.5
12 24 84 156 || 19.06 305.28 16.1
15 24 99 189 || 21.76 558.10 25.6
24 24 144 288 || 38.20 1899.86 49.7
30 24 174 354 || 73.74 4100.51 55.6

Table 2. A comparison of the LCP size and computational time for the OS and NMC/@fsl&dions for the multi-link pendulum
example with different number of links. The LCP size assumes 4 contatts & 4. The three LCP size columns are for the OS, the
NMC/OS and the NMC formulations. The speed up value is the ratio of the NMEGMOSOS formulation simulation times.
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Figure 6. Comparisons of the height and normal velocity of the last link using ther€$ énd NMC/OS (blue) formulation based
simulations for a 12-body pendulum.

of links and degrees of freedom in the system is increasedoritrast, the LCP size increases with the increase in the
number of links and degrees of freedom for the NMC/OS and tMECNormulations. We also observe that the OS
method is about 3.6 times faster for the 3 link pendulum casd,over 55 times faster for the 30 link pendulum when
compared with the the NMC/OS method. The performance gapngidubstantially as the number of links in the system
is increased. The performance gap between the OS and NM@ aiions will be even greater due to the even larger size
of the NMC LCP.

We have also applied the OS formulation to simulate manifidasks for the dual arm system in Figure 1. Video
clips showing the dual arm removal of a wheel from its hub, #relgrasping and hand off of an impact driver from
one hand to the other in simulation are included in the acemyipg media clips. In each of these cases, the contact
and collision dynamics events during grasping and otheraations are simulated using the OS formulation. Unlile th
serial-chain structure of the pendulum system, the dualsystem has a more general tree-topology.

9 Conclusions

In this article we have described a progression of formaifestifor the contact and collision dynamics of multi-linkiedt
ulated systems with the goal of reducing computational derify. Along the way, we have clarified the relationships
among the different approaches and those in the litera@ue strategy has been to find a formulation that best exploits
the available low-order articulated body dynamics al¢yoni$ to reduce the overall computational complexity.

The formulations studied here vary in the size of the LCP,ctvplexity of setting up the LCP, and the ancillary
dynamics steps needed to complete the dynamics solutiang@ierally observed trend is that the reduction in the LCP
size shifts the computational burden from solving the LG#bfem, to the setting up of the LCP problem. The widely used
NMC non-minimal coordinate formulation is the simplest ahéapest to set up, but also the most expensive to solve due
to its large dimension. The RMC minimal coordinate appraatkhe other hand has the smallest LCP dimension, but one
that is the most expensive to set up. In the RMC approachjze®bthe LCP problem in is justi, (n¢+2)+ny), which
is independent of the number of links, the number of degréfs@dom and the dimension of the bilateral constraints on
the system. In contrast, the size of the corresponding NM@ iJarger by & — N. For a 6-link manipulator with 6
degrees of freedom, this amounts to difference in dimensi@o.

The OS formulation shares the small LCP dimension propéittygoRMC approach, with an LCP that is larger by only
the modest dimension of the loop closure bilateral con#sai, . We show that the OS formulation can be restructured in
a form that expresses its LCP matrix in terms of the operatispace OSCM matrix for the constraint nodes. This insight
allows us to apply low-order, structure-based computatiafgorithms available for the OSCM to significantly reduce
the complexity of setting up the OS LCP. Consequently the @®@ilation is the lowest overall complexity formulation
with a small LCP along with low complexity algorithms for 8ety up the LCP. Focusing on this option, we describe
extensions of the contact dynamics formulation to handista and inelastic collision dynamics. The OS formuldton
use of minimal coordinates also results in the automatioreement of the inter-link hinge bilateral constraints amdids
the need for additional bilateral constraint error consaiemes. The benchmark simulations using a pendulum system
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show a widening performance improvement using the OS fatimn as the number of bodies is increased. For the 30 link
pendulum system, the OS formulation is over 55 times fakan the NMC/OS approach. An area of future work is the
integration of the OS formulation with the large variety iofi¢ stepping schemes that are in development for increasing
the robustness and accuracy of contact and collision nmognmynamics [19].
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10 Appendix

The operational space for the multi-link system is definethleyconfiguration of the set of constraint nodes on the system
The key implementation and computational challenge fairgetip the OS formulation LCP in Eq. 53 is the need for
evaluating the\ matrix. As seen in Eq. 49\ involves the configuration dependent matrix products ofidebian matrix
and the mass matrix inverse. A direct evaluation of this esgion require® (N®) computations. However references
[10, 14, 20] have used spatial operators to develop simplgrecursive computational algorithms farthat are of only
O(N) complexity. We briefly describe the underlying analysis atrdcture of this algorithm, and refer the reader to
[10, 14, 20] for notation and derivation details.

10.1 Spatial operator factorization of M1

We begin with the following key spatial operator based atiedy results that provide explicit, closed-form expressi
for the factorization and inversion of a tree mass matrix pI1J:
M =HdMp*H*
M =1+ HdX] DI+ HpX]"
[T+ H$X] ! = [I— HpK]
Mt =1 —HPK]" DI — HPK]

(59)

The first expression defines the Newton-Euler operator fiaetiion of the mass matrixt in terms of theH hinge artic-
ulation, thed rigid body propagation and thel link spatial inertia operators. While this factorizatiorsh@on-square
factors, the second expression describes an alternatit@itzation involving only square factors with block diagd D
and block lower-triangulall + HbX] matrices. This factorization involves new spatial operathat are associated with
thearticulated body (ABjorward dynamics algorithm [9, 20] for the system. The nextression describes an analytical
expression for the inverse of the+ HdX] operator. Using this leads to the final analytical expres&io the inverse

of the mass matrix. These operator expressions hold génévatree-topology systems irrespective of the number of
bodies, the types of hinges, the specific topological strectand even for non-rigid links [10].

10.2 The Q extended operational space compliance matrix

With V € R5™ denoting the stacked vector of link spatial velocitiessjtatial operator expression is [10]
V = ¢p*H*O (60)

Bundling together the rigid body transformations for altiee we define th® ¢ R *®"e pick-off matrix such that the
stacked vector of node spatial velocitiés can be expressed as

Ve =BV L Bo'HO = g ¥ BpH (61)
This is the spatial operator expression for ghdacobian matrix. Using this expression and Eq. 59 for thesmaatrix
inverse within Eq. 49 leads to the following expression/for

59

A2 ogvig B*p*H* (I — HPK)* DI — HPK)HPHB (62)
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Using the spatial operator identity [10, 21]
(I—HYK)HD = Hyp (63)

in Eq. 62 leads to the following simpler expression far
A=B*QBwithQ 2 Pp*H*D Hyp € REex6ne (64)

We have arrived at an expression forthat unlike Eq. 49, involves neither the mass matrix ineersr the node’s Jacobian
matrix! We refer toQ as theextended operational space compliance matfikis terminology is based on Eg. 64 which
shows that the OSCMA can be obtained by a reducing transformation of the fullpally Q matrix by theB pick-off
operator involving just the matrix sub-blocks associatéti the parent links of the nodes. From its definition, it isadi
thatQ is a symmetric and positive semi-definite sifige! is a symmetric positive-definite matrix.

While the explicit computation dit—* or g is not needed to obtain, the direct evaluation of Eq. 64 still remains of
O(N®) complexity due to the need for carrying out the multiple rixatnatrix products. The next section shows that these
matrix/matrix products can be avoided by exploiting a deggosition of theQ) matrix.

10.3 Decomposition of Q

The following lemma describes a decomposition(dfinto simpler component terms and an expression for its block
elements. Th€}, andy () terms used below are defined in references [10, 20]. Furttrerp(k) denotes the parent link

for thek'" link, andi < j notation implies that thg™ link is an ancestor of thé™ link in the tree.

Lemma 1 Decomposition of QO
Q can be decomposed into the following disjoint sum:

Q=Y+ Y +Yh+R where R = Y e (k) Y(K(k,j)g

Vij: 1A
k=p(ij)

(65)

Y € R®ex6nc is a block-diagonal operator, referred to as the operatibspace compliance kernel, satisfying the
following backward Lyapunov equation:

H*D H="— diagOf{Eprew} (66)

diagOf{E’be&,,} represents just the block-diagonal part of the (generatiy block-diagonal)ey, Y€y, matrix. The

6 x 6 dimensional, symmetric, positive semi-defiffité) diagonal matrices satisfy the following parent/child resiue
relationship:
Y (k) =" (p(k), k)Y (k) (p(k), k) + H* (k)D~* (k) H(k) (67)

This relationship forms the basis for the followi@fN) base-to-tips scatter recursion for computing tfigk) diagonal

elements:
for all nodesk (base-to-tips scatter)

Y (k) =" (k) k)Y (k) (p(k), k) + H* (k)D~ (k) H(k) (68)
end loop

While Y defines the block-diagonal element<yfthe following recursive expressions describe its offydiaal terms:

Y1) fori=j
.o ) QL K(k,j) fori=k-j, k=)
Q) = Q*(3,1) fori < j (69)

QL KW(K]) forif i, j# i, k=p(ij)
Proof: See [10, 20].
Eq. 65 shows thaf) can be decomposed into the sum of simpler terms consistitigedblock diagonal’, the upper-

triangularJ)*Y, the lower triangulai’ﬁI), and the sparsB matrices. Furthermore, Eq. 69 reveals that all of the block-
elements of)(1,j) can be obtained from tHé(i) elements of th&" block-diagonal operational space compliance kernel.
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From theA = B*QB expression, and the sparse structuréoft is clear that only a subset of the element<bf
are needed to compute. TheB pick-off operator has one column for each of the nodes, watthesuch column having
only a single non-zero & 6 matrix entry at thé&'" parent link slot. Only as many elements(@fas there are elements
in A are needed. Thus, just x n. number of 6x 6 sub-block matrices af) are required. In view of the symmetry of
the matrices, we actually need just(n. + 1)/2 such sub-block matrices. The overall complexity of thggoakhm is
linearly proportional to the number of degrees of freedomd, @ quadratic function of the number of nodes. This is much

lower than theD (N?) complexity implied by Eq. 49.



